Development status and prospects of solid oxide cell high entropy electrode catalysts
- Corresponding author: Zhan GAO, zhangao18@xjtu.edu.cn
Citation:
Yuying JIANG, Jia LUO, Zhan GAO. Development status and prospects of solid oxide cell high entropy electrode catalysts[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1719-1730.
doi:
10.11862/CJIC.20250124
GAO Z, MOGNI L V, MILLER E C, RAILSBACK J G, BARNETT S A. A perspective on low-temperature solid oxide fuel cells[J]. Energy Environ. Sci., 2016, 9: 1602-1644
doi: 10.1039/C5EE03858H
WANG J Y, GAO H, ZHAO K P, WULIJI H X, ZHAO B R, MA J, CHEN X G, ZHANG J W, SUI Y P, WEI T R, ZHU M, SHI X. Atomic to nanoscale chemical fluctuations: The catalyst for enhanced thermoelectric performance in high-entropy materials[J]. Sci. Adv., 2025, 11(9): eadt6298
doi: 10.1126/sciadv.adt6298
MA Y J, MA Y, WANG Q S, SCHWEIDLER S, BOTROS M, FU T T, HAHN H, BREZESINSKI T, BREITUNG B. High-entropy energy materials: Challenges and new opportunities[J]. Energy Environ. Sci., 2021, 14: 2883-2905
doi: 10.1039/D1EE00505G
GAO H T, ZHAO K P, WULIJI H, ZHU M, XU B B, LIN H, FEI L T, ZHANG H Y, ZHOU Z Y, LEI J D, CHEN H Y, WAN S, WEI T R, SHI X. Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance[J]. Energy Environ. Sci., 2023, 16: 6046-6057
doi: 10.1039/D3EE02788K
FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. Int. J. Hydrog. Energy, 2022, 47: 13771-13802
doi: 10.1016/j.ijhydene.2022.02.112
BAIUTTI F, CHIABRERA F, ANZENGRUBER M, KREKA K, SIRVENT J, YEDRA L, BUZI F, LIEDKE M O, CAVALLARO A, ZUAZO A C, ESTRADE S, BUTTERLING M, HIRSCHMANN E, WAGNER A, AGUADERO A, PEIRO F, TARANCON A. Leveraging grain boundary effects for nanostructured electrode layers in symmetric solid oxide fuel cells[J]. Adv. Mater. Interfaces, 2025, 12: 2400872
doi: 10.1002/admi.202400872
WANG S, JIANG W, ZHENG Y F, XIAO G P. Engineering a novel interface structure on La0.75Sr0.25Cr0.5Mn0.5O3-δ-Gd0.1Ce0.9O2-δ fuel electrode with excellent electrochemical performance and sulfur tolerance for electrocatalytic CO2 reduction[J]. J. Power Sources, 2025, 627: 235852
doi: 10.1016/j.jpowsour.2024.235852
SONG X, JIANG Y Y, DANG X Y, GAO Z. In situ exsolved mangosteen-type nanoalloy clusters and engineered heterogeneous interfaces for high-performance fuel-flexible solid oxide cells[J]. Small, 2025;21(14): 2412437
doi: 10.1002/smll.202412437
CHEN H J, GUO Z, ZHANG L A, LI Y F, LI F, ZHANG Y P, CHEN Y, WANG X W, YU B, SHI J M, LIU J, YANG C H, CHENG S, CHEN Y, LIU M L. Improving the electrocatalytic activity and durability of the La0. 6Sr0.4Co0.2Fe0.8O3-δ cathode by surface modification[J]. ACS Appl. Mater. Interfaces, 2018, 10: 39785-39793
doi: 10.1021/acsami.8b14693
ZHANG W J, GAO Y, ZHANG J K, ZHAO A, LIU F S, ZHENG K, JIN F J, LING Y H. Designing highly active and CO2 tolerant heterostructure electrode materials by a facile A-site deficiency strategy in Pr1-xBaCo2O5+δ double perovskite[J]. J. Power Sources, 2024, 602: 234344
doi: 10.1016/j.jpowsour.2024.234344
ZHANG S L, WANG H, LU M Y, ZHANG A P, MOGNI L V, LIU Q, LI C X, LI C J, BARNETT S A. Cobalt-substituted SrTi0.3Fe0.7O3-δ: A stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy Environ. Sci., 2018, 11: 1870-1879
doi: 10.1039/C8EE00449H
DOS SANTOS-GOMEZ L, ZAMUDIO-GARCIA J, PORRAS-VAZQUEZ J M, LOSILLA E R, MARRERO-LOPEZ D. Recent progress in nanostructured electrodes for solid oxide fuel cells deposited by spray pyrolysis[J]. J. Power Sources, 2021, 507: 230277
doi: 10.1016/j.jpowsour.2021.230277
CHOI Y, CHO H J, KIM J, KANG J Y, SEO J, KIM J H, JEONG S J, LIM D K, KIM I D, JUNG W. Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells[J]. ACS Nano, 2022, 16: 14517-14526
doi: 10.1021/acsnano.2c04927
HE D B, GONG Y Z, NI J P, NI C S. A stable chromite anode for SOFC with Ce/Ni exsolution for simultaneous electricity generation and CH4 reforming[J]. Sep. Purif. Technol., 2023, 315: 123739
doi: 10.1016/j.seppur.2023.123739
ZHANG W, WEI J L, ZHOU Y X, MAO Y Z, ALONSO J A, LÓPEZ C A, FERNÁNDEZ-DIAZ M T, SONG Y P, MA X L, SUN C W. Co-Ru bimetallic nanoparticles/oxygen deficient perovskite oxides as a highly efficient anode catalyst layer for direct-methane solid oxide fuel cells[J]. Chem. Eng. J., 2024, 498: 155502
doi: 10.1016/j.cej.2024.155502
KOUSI K, TANG C Y, METCALFE I S, NEAGU D. Emergence and future of exsolved materials[J]. Small, 2021, 17(21): 2006479
doi: 10.1002/smll.202006479
KWON O, SENGODAN S, KIM K, KIM G, JEONG H Y, SHIN J, JU Y W, HAN J W, KIM G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nat. Commun., 2017, 8: 15967
doi: 10.1038/ncomms15967
LIU S X, WU D, KONG M H, WANG W, XIE L, HE J Q. High-entropy thermoelectric materials: Advances, challenges, and future opportunities[J]. ACS Energy Lett., 2025, 10: 925-934
doi: 10.1021/acsenergylett.4c03369
BAHOUT M M, PRAVEEN B, DORCET V, LA SALLE A L, PAOFAI S, HANSEN T C. In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen[J]. J. Mater. Chem. A, 2020, 8: 3590-3597
doi: 10.1039/C9TA10159D
WANG J K, FU L, YANG J M, LIU Z R, ZHOU J, MYUNG J H, WU K. In situ growth of Ru/RuO2 nanoparticle-modified (PrBa)0.95Mn1.9 Ru0.1O5+δ as a high-performance electrode for symmetrical solid oxide fuel cells[J]. Energy Fuels, 2022, 36: 12236-12244
doi: 10.1021/acs.energyfuels.2c02338
SUN Y F, ZHANG Y Q, HUA B, BEHNAMIAN Y, LI J, CUI S H, LI J H, LUO J L. Molybdenum doped Pr0.5Ba0.5MnO3-δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. J. Power Sources, 2016, 301: 237-241
doi: 10.1016/j.jpowsour.2015.09.127
SUN Y F, ZHANG Y Q, CHEN J, LI J H, ZHU Y T, ZENG Y, AMIRKHIZ B, LI S, HUA B, LUO J L. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Lett., 2016, 16: 5303-5309
doi: 10.1021/acs.nanolett.6b02757
ADIJANTO L, PADMANABHAN V B, KÜNGAS R, GORTE R J, VOHS J M. Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes[J]. J. Mater. Chem., 2012, 22: 11396-11402
doi: 10.1039/c2jm31774e
JIANG Y Y, LIU J M, CHENG B, DANG X Y, SU H Q, HUA Y N, GAO Z. In situ exsolved NiFe nanoparticles in Ni-doped Sr0.9Ti0.3 Fe0.63Ni0.07O3-δ anode with a three-dimensionally ordered macroporous structure for solid oxide fuel cells fueled by alkanes[J]. Chem. Eng. J., 2024, 491: 151865
doi: 10.1016/j.cej.2024.151865
ZHANG Y, CHEN B, GUAN D Q, XU M G, RAN R, NI M, ZHOU W, O′HAYRE R, SHAO Z P. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591: 246-251
doi: 10.1038/s41586-021-03264-1
YAO C G, XIA B X, ZHANG H X, WANG H C, ZHANG W W, GUO Q H, JIANG Y B, LANG X S, CAI K D. Fluoride-driven modulation of oxygen vacancies and surface stability in cobalt-based perovskite as a high-performance cathode for solid oxide fuel cells[J]. Chem. Eng. J., 2025, 505: 159359
doi: 10.1016/j.cej.2025.159359
TUN K S, GUPTA M. Microstructural evolution in MgAlLiZnCaY and MgAlLiZnCaCu multicomponent high entropy alloys[J]. Mater. Sci. Forum, 2018, 928: 183-187
doi: 10.4028/www.scientific.net/MSF.928.183
JHU P S, CHANG C W, CHENG C C, TING Y C, LIN T Y, YEN F Y, CHEN P W, LU S Y. Non-precious high entropy alloys and highly alkali-resistant composite membranes based high performance anion exchange membrane water electrolyzers[J]. Nano Energy, 2024, 126: 109703
doi: 10.1016/j.nanoen.2024.109703
HSU W L, TSAI C W, YEH A C, YEH J W. Clarifying the four core effects of high-entropy materials[J]. Nat. Rev. Chem., 2024, 8: 471-485
doi: 10.1038/s41570-024-00602-5
DABROWA J, OLSZEWSKA A, FALKENSTEIN A, SCHWAB C, SZYMCZAK M, ZAJUSZ M, MOZDZIERZ M, MIKULA A, ZIELINSKA K, BERENT K, CZEPPE T, MARTIN M, SWIERCZEK K. An innovative approach to design SOFC air electrode materials: High entropy La1-xSrx(Co, Cr, Fe, Mn, Ni)O3-δ (x=0, 0.1, 0.2, 0.3) perovskites synthesized by the sol-gel method[J]. J. Mater. Chem. A, 2020, 8: 24455-24468
doi: 10.1039/D0TA06356H
YANG Q, WANG G Q, WU H D, BESHIWORK B A, TIAN D, ZHU S Y, YANG Y, LU X Y, DING Y Z, LING Y H, CHEN Y H, LIN B. A high-entropy perovskite cathode for solid oxide fuel cells[J]. J. Alloy. Compd., 2021, 872: 159633
doi: 10.1016/j.jallcom.2021.159633
LIN Z, MA B, CHEN Z H, CHENG L, ZHOU Y K. Exploring B-site high-entropy configuration of spinel oxides for improved cathode performance in solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2024, 44: 2233-2241
doi: 10.1016/j.jeurceramsoc.2023.11.004
FU X M, LU S Q, MENG X W, SUN C X, WEI M B, JIANG H P, GONG W J. High-entropy cobalt-free perovskite as a high-performing nanofiber cathode for solid oxide fuel cells[J]. J. Mater. Chem. A, 2024, 12: 27452-27463
doi: 10.1039/D4TA01803F
XIA Z T, ZHANG Y X, XIONG X L, CUI J Z, LIU Z, XI S B, HU Z W, WANG J Q, ZHANG L J. Realizing B-site high-entropy air electrode for superior reversible solid oxide cells[J]. Appl. Catal. B‒ Environ. Energy, 2024, 357: 124314
doi: 10.1016/j.apcatb.2024.124314
LI X L, CHEN T, WANG C, SUN N, ZHANG G J, ZHOU Y C, WANG M, ZHU J, XU L, WANG S R. An active and stable high-entropy ruddlesden-popper type La1.4Sr0.6Co0.2Fe0.2Ni0.2Mn0.2Cu0.2O4±δ oxygen electrode for reversible solid oxide cells[J]. Adv. Funct. Mater., 2024, 34(52): 2411216
doi: 10.1002/adfm.202411216
ZHU F, DU Z W, XU K, HE F, XU Y S, LIAO Y H, CHEN Y. Entropy and composition regulations of air electrodes enable efficient oxygen reduction and evolution reactions for reversible solid oxide cells[J]. Adv. Energy Mater., 2024, 14(37): 2401048
LI T Y, YAO Y G, HUANG Z N, XIE P F, LIU Z Y, YANG M H, GAO J L, ZENG K Z, BROZENA A H, PASTEL G, JIAO M L, DONG Q, DAI J Q, LI S K, ZONG H, CHI M F, LUO J, MO Y F, WANG G F, WANG C, SHAHBAZIAN-YASSAR R, HU L B. Denary oxide nanoparticles as highly stable catalysts for methane combustion[J]. Nat. Catal., 2021, 4: 62-70
doi: 10.1038/s41929-020-00554-1
LI M, SUN C, NI Q, SUN Z, LIU Y, LI Y, LI L, JIN H B, ZHAO Y J. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode[J]. Adv. Energy Mater., 2023, 13(12): 2203971
doi: 10.1002/aenm.202203971
SU G S, WANG Y J, MU J W, REN Y F, YUE P, JI W X, LIANG L W, HOU L R, CHEN M, YUAN C Z. Insights into tiny high-entropy doping promising efficient sodium storage of Na3V2(PO4)2O2F toward sodium-ion batteries[J]. Adv. Energy Mater., 2024, 15(11): 2403282
LUO J, LI X, YE Y J, ZHOU T, WU W L, LI H L, YANG Q, YAN H, ZENG J. Progressive fabrication of a Pt-based high-entropy-alloy catalyst toward highly efficient propane dehydrogenation[J]. Angew. Chem. ‒Int. Edit., 2025, 64(7): e202419093
doi: 10.1002/anie.202419093
ZHANG D, WANG Y, PENG Y H, LUO Y, LIU T, HE W, CHEN F L, DING M Y. Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction[J]. Adv. Powder Mater., 2023, 2(4): 100129
doi: 10.1016/j.apmate.2023.100129
LUAN H W, SHAO Y, LI J F, MAO W L, HAN Z D, SHAO C, YAO K F. Phase stabilities of high entropy alloys[J]. Scr. Mater., 2020, 179: 40-44
doi: 10.1016/j.scriptamat.2019.12.041
SHEN L Y, DU Z H, ZHANG Y, DONG X, ZHAO H L. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Appl. Catal. B‒ Environ. Energy, 2021, 295: 120264
doi: 10.1016/j.apcatb.2021.120264
LEE K X, HU B X, DUBEY P K, ANISUR M R, BELKO S, APHALE A N, SINGH P. High-entropy alloy anode for direct internal steam reforming of methane in SOFC[J]. Int. J. Hydrog. Energy, 2022, 47: 38372-38385
doi: 10.1016/j.ijhydene.2022.09.018
HU B X, LAU G, LEE K X, BELKO S, SINGH P, TUCKER M C. Ethanol-fueled metal supported solid oxide fuel cells with a high entropy alloy internal reforming catalyst[J]. J. Power Sources, 2023, 582: 233544
doi: 10.1016/j.jpowsour.2023.233544
ZHANG S S, GAO Y, NIU Q, ZHANG P F. Enhancing coke resistance of Ni-based spinel-type oxides by tuning the configurational entropy[J]. J. Catal., 2024, 440: 115819
doi: 10.1016/j.jcat.2024.115819
ZHU Y, ZHANG N, ZHANG W Y, GONG Y S, WANG R, WANG H W, JIN J, ZHAO L, HE B B. Probing metal/high-entropy perovskite heterointerfaces for efficient and sustainable CO2 electroreduction[J]. J. Mater. Chem. A, 2024, 12: 18182-18192
doi: 10.1039/D4TA02372B
WANG C, ZHU Y, LING Y H, GONG Y S, WANG R, WANG H W, JIN J, ZHAO L, HE B B. Atomistic insights into medium-entropy perovskites for efficient and robust CO2 electrolysis[J]. ACS Appl. Mater. Interfaces, 2023, 15: 45905-45914
doi: 10.1021/acsami.3c09913
TONG J, NI N, ZHOU B W, YANG C Q, REDDY K M, TU H Y, LIU Y S, TAN Z, XIANG L K, LI H Z, ZHOU X, ZHANG Y Y, LI Y X, ZHANG H C, ZHU L, HUANG Z. Toward high CO selectivity and oxidation resistance solid oxide electrolysis cell with high-entropy alloy[J]. ACS Catal., 2024, 14: 2897-2907
doi: 10.1021/acscatal.3c05972
SHI Y C, NI N, DING Q, ZHAO X F. Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes[J]. J. Mater. Chem. A, 2022, 10: 2256-2270
doi: 10.1039/D1TA07275G
HAN X, LING Y H, YANG Y, WU Y J, GAO Y, WEI B, LV Z. Utilizing high entropy effects for developing chromium-tolerance cobalt-free cathode for solid oxide fuel cells[J]. Adv. Funct. Mater., 2023, 33(43): 2304728
doi: 10.1002/adfm.202304728
LIAO Y Q, HE Y, CUI X M, LIU L P. Elemental Fe conditioning for the synthesis of highly selective and stable high entropy catalysts for CO2 methanation[J]. Fuel, 2024, 355: 129494
doi: 10.1016/j.fuel.2023.129494
ZHANG M Y, YE J, GAO Y, DUAN X L, ZHAO J H, ZHANG S S, LU X Y, LUO K L, WANG Q Q, NIU Q, ZHANG P F, DAI S. General synthesis of high-entropy oxide nanofibers[J]. ACS Nano, 2024, 18: 1449-1463
doi: 10.1021/acsnano.3c07506
XU Y S, XU X, BI L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells[J]. J. Adv. Ceram., 2022, 11: 794-804
doi: 10.1007/s40145-022-0573-7
DANG X Y, LI T H, JIANG Y Y, GAO Z, HUA Y N, SU H Q. High-performance Ti-doped strontium cobaltite perovskites as oxygen electrodes in solid oxide cells[J]. J. Power Sources, 2024, 603: 234448
doi: 10.1016/j.jpowsour.2024.234448
GONG J Y, HOU J. B-site high-entropy tailoring K2NiF4 oxide as an effective cathode for proton-conducting solid oxide fuel cells[J]. J. Mater. Sci. Technol., 2024, 186: 158-163
doi: 10.1016/j.jmst.2023.11.018
HE F, ZHU F, XU K, XU Y S, LIU D L, YANG G M, SASAKI K, CHOI Y M, CHEN Y. A highly oxygen reduction reaction active and CO2 durable high-entropy cathode for solid oxide fuel cells[J]. Appl. Catal. B‒Environ. Energy, 2024, 355: 124175
doi: 10.1016/j.apcatb.2024.124175
ZHU F, XU K, HE F, XU Y S, DU Z W, ZHANG H, ZENG D P, LIU Y, WANG H B, DING D, ZHOU Y C, CHEN Y. An active and contaminants-tolerant high-entropy electrode for ceramic fuel cells[J]. ACS Energy Lett., 2024, 9: 556-567
doi: 10.1021/acsenergylett.4c00037
ZOU J Y, TANG L, HE W E, ZHANG X H. High-entropy oxides: Pioneering the future of multifunctional materials[J]. ACS Nano, 2024, 18: 34492-34530
doi: 10.1021/acsnano.4c12538
PRABHAHARI V, PRAVEENA R, BABU K S. Novel spinel based high entropy oxide as electrode for symmetric SOFCs[J]. J. Alloy. Compd., 2024, 986: 174152
doi: 10.1016/j.jallcom.2024.174152
WANG Z M, TAN T, DU K, ZHANG Q M, LIU M L, YANG C H. A high-entropy layered perovskite coated with in situ exsolved core-shell CuFe@FeOx nanoparticles for efficient CO2 electrolysis[J]. Adv. Mater., 2024, 36(11): 2312119
doi: 10.1002/adma.202312119
LI Z P, GE Y F, XIAO Y H, DU M R, YANG F R, MA Y, LI Y, GAO D G, LI H B, WANG J H, WANG P. Fabrication and performance investigation of high entropy perovskite (Sr0.2Ba0.2Bi0.2 La0.2Pr0.2)FeO3 IT-SOFC cathode material[J]. J. Alloy. Compd., 2024, 989: 174357
doi: 10.1016/j.jallcom.2024.174357
ZHENG T, LI Z Y, WANG D G, PAN Z X, SUN H B, SONG T, ZHAO S K. Enhanced anti-chromium poisoning ability of high entropy La0.2Nd0.2Sm0.2Sr0.2Ba0.2Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells[J]. J. Alloy. Compd., 2024, 982: 173753
doi: 10.1016/j.jallcom.2024.173753
SALMAN M, SALEEM S, LING Y, KHAN M. Fe-based high-entropy perovskite oxide: A strategy to suppress Sr segregation and performance evaluation as an electrode material for SOFCs[J]. ACS Appl. Energy Mater., 2024, 7: 8648-8657
doi: 10.1021/acsaem.4c01614
YUAN M K, GAO Y, LIU L M, GAO J T, WANG Z, LI Y, HAO H R, HAO W T, LOU X T, LV Z, XU L L, WEI B. High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2024, 44: 3267-3276
doi: 10.1016/j.jeurceramsoc.2023.12.049
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295-309
doi: 10.1038/s41578-019-0170-8
XIAO M, LIU Z Q, DI H S, BAI Y S, YANG G M, MEDVEDEV D A, LUO Z X, WANG W, ZHOU W, RAN R, SHAO Z P. High-entropy materials for solid oxide cells: Synthesis, applications, and prospects[J]. J. Energy Chem., 2025, 104: 268-296
doi: 10.1016/j.jechem.2024.12.009
DABROWA J, STEPIEN A, SZYMCZAK M, ZAJUSZ M, CZAJA P, SWIERCZEK K. High-entropy approach to double perovskite cathode materials for solid oxide fuel cells: Is multicomponent occupancy in (La, Pr, Nd, Sm, Gd)BaCo2O5+δ affecting physicochemical and electrocatalytic properties?[J]. Front. Energy Res., 2022, 10: 899308
doi: 10.3389/fenrg.2022.899308
HAN X, YANG Y, FAN Y, NI H, GUO Y M, CHEN Y, OU X M, LING Y H. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling[J]. Ceram. Int., 2021, 47: 17383-17390
doi: 10.1016/j.ceramint.2021.03.052
ZHANG Z P, WANG H, LI X J, XU H Y, QI M L. CO2/Cr-tolerance and oxygen reduction reaction of novel high-entropy perovskite cathode for intermediate temperature solid oxide fuel cell[J]. Ceram. Int., 2024, 50: 11360-11369
doi: 10.1016/j.ceramint.2024.01.036
YAO C G, LIU W N, ZHANG H X, WANG H C, ZHANG W W, LANG X S, CAI K D. High-entropy perovskite (Pr1/6Nd1/6Sm1/6Ba1/6Sr1/6)6/7(Mn1/6Co)6/7O3-δ as a highly active and CO2 durable cathode for solid oxide fuel cells[J]. Appl. Catal. B‒ Environ. Energy, 2025, 363: 124789
doi: 10.1016/j.apcatb.2024.124789
GUO T M, DONG J B, CHEN Z P, RAO M M, LI M F, LI T, LING Y H. Enhanced compatibility and activity of high-entropy double perovskite cathode material for IT-SOFC[J]. J. Inorg. Mater., 2023, 38: 693-700
doi: 10.15541/jim20220551
YANG Y, BAO H, NI H, OU X M, WANG S R, LIN B, FENG P Z, LING Y H. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode[J]. J. Power Sources, 2021, 482: 228959
doi: 10.1016/j.jpowsour.2020.228959
WANG X T, ZHONG J Y, LI Z G, XIANG J L, HOU B X, TAN Z X, LIU L S, WANG C C. Chromium tolerance of high entropy BaO impregnated-(La0.2Pr0.2Sm0.2Gd0.2Nd0.2)Ba0.5Sr0.5Co1.5Fe0.5O5 (LPSGNBSCF) cathodes for solid oxide fuel cell[J]. J. Solid State Electrochem., 2024, 29: 1787-1800
LIN Z, MA B, CHEN Z H, ZHOU Y K. Nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as a potential cathode for solid oxide fuel cells[J]. Ceram. Int., 2023, 49: 23057-23067
doi: 10.1016/j.ceramint.2023.04.131
SALMAN M, SALEEM S, LING Y H, KHAN M, GAO Y. Improved electrochemical performance of high-entropy La0.8Sr0.2FeO3-based IT-SOFC cathode[J]. Ceram. Int., 2024, 50: 39475-39484
doi: 10.1016/j.ceramint.2024.07.324
LIU D F, CHEN Z P, ZHANG W J, SUN M Y, JIN F J, LIU H M, OU X M, ZHENG K, LING Y H. One-pot fabrication of high-entropy heterostructure cathode materials with excellent anti-poisoning properties in solid oxide fuel cells[J]. J. Power Sources, 2025, 626: 235809
doi: 10.1016/j.jpowsour.2024.235809
LI Z Q, GUAN B, XIA F, NIE J Y, LI W Y, MA L, LI W, ZHOU L F, WANG Y, TIAN H C, LUO J, CHEN Y, FROST M, AN K, LIU X B. High-entropy perovskite as a high-performing chromium-tolerant cathode for solid oxide fuel cells[J]. ACS Appl. Mater. Interfaces, 2022, 14: 24363-24373
doi: 10.1021/acsami.2c03657
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Yan Xin , Yunnian Ge , Zezhong Li , Qiaobao Zhang , Huajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Hongren RONG , Gexiang GAO , Zhiwei LIU , Ke ZHOU , Lixin SU , Hao HUANG , Wenlong LIU , Qi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007