Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms
- Corresponding author: Yu HU, huyugucas@126.com
Citation:
Shiqian WEI, Xinyu TIAN, Hong LIU, Maoxia CHEN, Fan TANG, Qiang FAN, Weifeng FAN, Yu HU. Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1776-1788.
doi:
10.11862/CJIC.20250102
ZHAO X M, LIU X, HUANG B Y, WANG P, PEI Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe)[J]. J. Mater. Chem. A, 2019, 7: 24583-24593
doi: 10.1039/C9TA08661G
YANG C C, ZAI S F, ZHOU Y T, DU L, JIANG Q. Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER[J]. Adv. Energy Mater., 2019, 29: 1901949
LEE M S, WHANG D R, SONG Y H, KIM J T, YANG M H, CHOI U H, CHANG D W. Effects of pyridine and pyrrole moieties on supercapacitive properties of imine-rich nitrogen-doped graphene[J]. Carbon, 2019, 152: 915-923
doi: 10.1016/j.carbon.2019.06.082
LAI J S, ELLIS M W, IEEE F. Fuel cell power systems and applications[J]. Proc. IEEE, 2017, 105: 2166-2190
doi: 10.1109/JPROC.2017.2723561
TIAN G L, ZHAO M Q, YU D S, KONG X Y, HUANG J Q, ZHANG Q, WEI F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction[J]. Small, 2014, 10: 2251-2259
doi: 10.1002/smll.201303715
JIA H L, LI H C, JI P C, TENG Y, GUAN M Y. Preparation and performance of nitrogen-doped carbon nanotube-supported Co3O4 oxygen reduction electrocatalysts[J]. Chinese J. Inorg. Chem., 2024, 40(4): 693-700
doi: 10.11862/CJIC.20230402
WANG Q C, WANG J, LEI Y P, CHEN Z Y, SONG Y, LUO S B. Research progress on the application of carbon nanotube-based non-precious metal catalysts in electrocatalytic redox[J]. Chinese J. Inorg. Chem., 2018, 34(5): 807-822
doi: 10.11862/CJIC.2018.101
YANG Z B, YUE T L, YU X N, WU M M. Electrocatalytic properties of cobalt-doped cerium oxide nanoparticles[J]. Chinese J. Inorg. Chem., 2018, 33(8): 845-853
doi: 10.15541/jim20170516
WANG C, HUANG H X, XIAO Y, LIANG D M. Preparation and oxygen catalytic properties of g-C3N4/double perovskite composites[J]. Chinese J. Inorg. Chem., 2019, 35(2): 254-262
LIU Y, DUAN X D, REN S S, GE F Y, ZHENG H G. Application of metal-organic frameworks and their derivatives in water electrolysis and zinc-air batteries[J]. Chinese J. Inorg. Chem., 2024, 40(1): 15-32
LIM J, JUNG J W, KIM N Y, LEE G Y, LEE H J, LEE Y, CHOI D S, YOON G R, KIM Y H, KIM D, KIM S O. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery[J]. Energy Storage Mater., 2020, 32: 517-524
doi: 10.1016/j.ensm.2020.06.034
LI Y W, ZHANG W J, LI J, MA H Y, DU H M, LI D C, WANG S N, ZHAO J S, DOU J M, XU L Q. Fe-MOF derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air battery[J]. ACS Appl. Mater. Interfaces, 2020, 12(40): 44710-44719
doi: 10.1021/acsami.0c11945
AHMED N, AMER A, ALI B A, BIBY A H, MESBAH Y I, ALLAM N K. Boosting the cyclic stability and supercapacitive performance of graphene hydrogels via excessive nitrogen doping: Experimental and DFT insights[J]. Sustain. Mater. Technol., 2020, 25: 00206
REY-RAAP N, SANTOS-GOMEZ L D, ARENILLAS A. Carbons for fuel cell energy generation[J]. Carbon, 2024, 228: 119291
doi: 10.1016/j.carbon.2024.119291
ZHOU N, WANG N, WU Z X, LI L G. Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: A Review[J]. Catalysts, 2018, 8(11): 509
doi: 10.3390/catal8110509
NING X M, LI Y H, MING J Y, WANG Q, WANG H J, CAO Y H, PENG F, YANG Y H, YU H. Electronic synergism of pyridinic and graphitic nitrogen on N-doped carbons for the oxygen reduction reaction[J]. Chem. Sci., 2019, 10: 1589-1596
doi: 10.1039/C8SC04596H
ZHOU T S, MA R G, ZHANG T, LI Z H, YANG M H, LIU Q, ZHU Y F, WANG J C. Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction[J]. J. Colloid Interface Sci., 2020, 536(15): 42-52
ZHANG W Z, DIJK B V, WU L F, MAHEU C, TUDOR V, HOFMANN J P, JIANG L, HETTERSCHEID D, SCHNEIDER G F. Role of vacancy defects and nitrogen dopants for the reduction of oxygen on graphene[J]. ACS Catal., 2024, 14: 11065-11075
doi: 10.1021/acscatal.4c01713
DING W, WEI Z D, CHEN S G, QI X Q, YANG T, HU J S, WANG D, WAN L J, ALVI S F, LI L. Space-confinement-induced synthesis of pyridinic and pyrrolic nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angew. Chem. ‒Int. Edit., 2013, 52(45): 11755-11759
doi: 10.1002/anie.201303924
YANG H B, MIAO J W, HUNG S F, CHEN J Z, TAO H B, WANG X Z, ZHANG L P, CHEN R, GAO J J, CHEN H M, DAI L M, LIU B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Sci. Adv., 2016, 2(4): e1501122
doi: 10.1126/sciadv.1501122
GUO D H, SHIBUYA R, AKIBA C, SAJI S, KONDO T, NAKAMURA J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365
doi: 10.1126/science.aad0832
PAN Y, LIU S J, SUN K, CHEN X, WANG B, WU K L, CAO X, CHEONG W C, SHEN R G, HAN A J, CHAN Z, ZHENG L R, LUO J, LIN Y, LIU Y Q, WANG D S, ZHANG Q, CHEN C, LI Y D. Bimetallic Zn/Fe polyphthalocyanine derived single-atom FeN4 catalytic site: A superior tri-functional catalyst for overall water splitting and Zn-air battery[J]. Angew. Chem. ‒Int. Edit., 2018, 57(28): 8614-8618
doi: 10.1002/anie.201804349
LI Y C, LIU X F, ZHENG L R, SHANG J X, WAN X, HU R M, GUO X, HONG S, SHUI J L. Preparation of Fe-N-C catalysts with FeNx (x=1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells[J]. J. Mater. Chem. A, 2019, 7(45): 26147-26153
doi: 10.1039/C9TA08532G
LIU J L, XIAO J X, LUO B C, TIAN E K, WATERHOUSE G I N. Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation[J]. Chem. Eng. J., 2022, 427: 132038
doi: 10.1016/j.cej.2021.132038
WEI S Q, LIU X R, ZHAO Y S, CHEN M X, LÜ S Z, FAN Q, WANG F, HU Y. Electrocatalytic performance of MNxO4-x as active sites for ORR/OER[J]. Rare Metal Mat. Eng. 2024, 53(8): 2250-2258
FAN Q, HOU P F, CHOI C, WU T S, HONG S, LI F, SOO Y L, KANG P, JUNG Y S, SUN Z Y. Activation of Ni particles into single Ni-N atoms for efffcient electrochemical reduction of CO2[J]. Adv. Energy Mater., 2019, 10(5): 1903068
KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50
doi: 10.1016/0927-0256(96)00008-0
JOHN P P, WANG Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33(12): 8800-8802
doi: 10.1103/PhysRevB.33.8800
KASPRZHITSKII A, KRUGLIKOV A, ERMOLOV Y, DOLGOVA A. Dataset on the crystal structure and electronic properties of kaolinite edge surfaces[J]. Data Brief, 2024, 54: 110498
doi: 10.1016/j.dib.2024.110498
GUO X Y, LIU S R, GU J X, ZHANG S L, CHEN Z F, HUANG S P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. J. Am. Chem. Soc., 2020, 142(12): 5709-5721
doi: 10.1021/jacs.9b13349
TANG Y N, CHEN W G, WU B J, ZHAO G, LIU Z Y, DAI X Q. Formation mechanism, geometric stability and catalytic activity of single Fe atom supported on N-doped graphene[J]. ChemPhysChem, 2019, 20(19): 2506-2517
doi: 10.1002/cphc.201900666
XIE T Y, WANG P, TIAN C F, ZHAO G Z, JIA J F, HE C Z, ZHAO C X, WU H S. The investigation of adsorption behavior of gas molecules on FeN3-doped graphene[J]. J. Sens., 2022: 9306741
LI X F, LI Q K, CHENG J, LIU L L, YAN Q, WU Y C, ZHANG X H, WANG Z Y, QIU Q, LUO Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene[J]. J. Am. Chem. Soc., 2016, 138(28): 8706-8709
doi: 10.1021/jacs.6b04778
HE J X, LI Q Y, LIU D M, FENG Z Y, QIN C C, WANG W J, YANG J, LIU L, XIAO J D, CHEN S, CHEN X F, WANG J Z, YUAN C Z, YANG Z K. Biomimetic square pyramidal N1-Fe-N4 single sites with optimized electron distribution for the efficient oxygen reduction reaction[J]. Small, 2025, 21: 2500897
doi: 10.1002/smll.202500897
ZHANG H N, LI J, XI S B, DU Y H, HAI X, WANG J Y, XU H M, WU G, ZHANG J, LU J, WANG J Z. A Graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angew. Chem. ‒Int. Edit., 2019, 58: 14871-14876
doi: 10.1002/anie.201906079
XU B L, LI S S, ZHENG L R, LIU Y H, HAN A L, ZHENG J, HUANG Z J, XIE H J, FAN K L, GAO L Z, LIU H Y. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy[J]. Adv. Mater., 2022, 34: 2107088
doi: 10.1002/adma.202107088
DU Q, ZHU C Q, YUE C L, CUN F X, DU Z L, LIU F Q, LI A M. Anchoring atomically dispersed FeN5 sites on porous and defect-rich biochar via cascade regulation strategy for efficient Fenton-like catalysis[J]. Appl. Catal. B‒Environ. Energy, 2024, 343: 123570
doi: 10.1016/j.apcatb.2023.123570
LU N, LI Y L, WANG J Q, LI G L, LI G W, LIU F, TANG C Y. Precise manipulation of iron spin states in single-atom catalytic membranes for singlet oxygen selective production[J]. Mater. Horiz., 2025, 12: 1944-1952
doi: 10.1039/D4MH01479K
WANG Z W, WANG W L, WANG J, YUAN Y, WU Q Y, HU H Y. High‑valent iron‑oxo species mediated cyclic oxidation through single‑atom≡Fe‑N6 sites with high peroxymonosulfate utilization rate[J]. Appl. Catal. B‒Environ. Energy, 2022, 305: 121049
doi: 10.1016/j.apcatb.2021.121049
TANG B, JI Q Q, ZHANG X L, SHI R C, MA J, ZHUANG Z C, SUN M, WANG H J, LIU R Q, LIU H J, WANG C, GUO Z Y, LU L L, JIANG P, WANG D S, YAN W S. Symmetry breaking of FeN4 moiety via edge defects for acidic oxygen reduction reaction[J]. Angew. Chem. ‒Int. Edit., 2025, 64: e202424135
doi: 10.1002/anie.202424135
NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, LINDQVIST L, KITCHIN J R, BLIGAARD T, JÓNSSON H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46): 17886-17892
doi: 10.1021/jp047349j
YANG B Y, GAO J P, XIE M H, ZUO S S, KANG H Y, SUN Y, XU X Y, WANG W, GAO C J, LIU Y, YAN J. N-self-doped porous carbon derived from animal-heart as an electrocatalyst for efficient reduction of oxygen[J]. J. Colloid Interface Sci., 2020, 579: 832-841
OU C R, CHEN H, WANG H, LIAO Y L, LI R, LIU H B. A novel in situ synthesis of nitrogen-doped graphene with excellent electrocatalytic performance for oxygen reduction reaction[J]. Electrochim. Acta, 2021, 380: 138256
LUO M S, SHAO C K, SONG H Q, XIA L M, GU J X. Effect of structure of metal-free nitrogen-doped coal-based carbon on catalytic oxygen reduction[J]. Fuel, 2025, 381: 133306
JIA N, SHI S F, YANG J X, JIA Y, WENG Q, CHEN P. Carbon material with high pyridine/graphite nitrogen content: An efficient electrocatalyst for the oxygen reduction reaction[J]. New J. Chem., 2024, 48: 640-645
LU X B, YANG X, WANG L M, LI F, ZHANG H J, LI J, ZAN L X, BRON M. N-doped carbon nanotubes with high amount of graphitic nitrogen as an excellent electrocatalyst for water splitting in alkaline solution[J]. J. Electroanal. Chem., 2023, 931: 117160
LIU J F, SUN G, WANG T, NING K, YUAN B X, PAN W G. The oxygen reduction activity of nitrogen-doped graphene[J]. Pol. J. Chem. Technol., 2022, 24(3): 29-34
JIANG H, GU J X, ZHENG X S, LIU M, QIU X Q, WANG L B, LI W Z, CHEN Z F, JI X B, LI J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy Environ. Sci., 2019, 12: 322-333
CHEN T, TAKAHASHI S, WAKI K. Exploring active sites in nitrogen doped carbon nanotube based electrocatalyst[C]//JONES D J, BUECHI F, SWIDERLYONS K E, PINTAURO P N, UCHIDA H, SCHMIDT T J, PIVOVAR B S, GASTEIGER H A, WEBER A Z, SHIRVANIAN P A, FENTON J M, FULLER T F, SHINOHARA K, PERRY K A, STRASSER P, COUTANCEAU C, MITSUSHIMA S, MANTZ R A, NARAYAN S, RAMANI V, AYERS K E, KIM Y T, XU H. ECS Transactions: Vol. 80. [S. l. ]: The Electrochemical Society, 2017: 801-806
BOPPELLA R, AUSTERIA P M, KIM Y J, KIM E, SONH I, EOM Y, KUMAR D P, BALAMURUGAN M, SIM E, KIM D H, KIM T K. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: Identifying the role of pyrrolic-N and synergistic electrocatalysis[J]. Adv. Funct. Mater., 2022, 32: 2202351
ZHANG Z, LIANG Y, TU Y C, CHEN R X, WU L H, ZHU J F, DENG D H. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction[J]. Cell Rep. Phys. Sci., 2020, 1: 100145
LI L, CHEN Y J, XING H R, LI N, XIA J W, QIAN X Y, XU H, LI W G, YIN F X, HE G Y, CHEN H Q. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries[J]. Nano Res., 2022, 15: 8056-8064
ZHANG S S, QIN Y Y, DING S J, SU Y Q. A DFT study on the activity origin of Fe-N-C sites for oxygen reduction reaction[J]. ChemPhysChem, 2022, 23: e202200165
MAO Y, CHEN J F, WANG H F, HU P. Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis[J]. Chin. J. Catal., 2015, 36(9): 1596-1605
LU S, HUYNH H L, LOU F L, GUO K, YU Z X. Single transition metal atom embedded antimonene monolayers as efficient trifunctional electrocatalysts for the HER, OER and ORR: A density functional theory study[J]. Nanoscale, 2021, 13: 12885
ZHOU X Y, JIN Z Y, ZHANG J Z, HU K L, LIU S D, QIU H J, LIU X. Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C[J]. Nanoscale, 2023, 15: 2276-2284
LI X Y, LIU J J, CAI Q H, KAN Z W, LIU S, ZHAO J X. Engineering d-band center of iron single atom site through boron incorporation to trigger the efficient bifunctional oxygen electrocatalysis[J]. J. Am. Chem. Soc., 2022, 628: 331-342
BLIGAARD T, NORSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J. Catal., 2004, 224(1): 206-217
DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. J. Phys. Chem., 1993, 97: 8617-8624
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078
(a) Graphene; (b) Npyri-C; (c) Npyrr-C; (d) Ngrap-C; The brown balls represent carbon atoms, and the gray blue balls represent nitrogen atoms.
(a) Fe-N3-C; (b) Fe-N4-C; (c) Fe-N5-C; (d) Fe-N6-C; The brown balls represent carbon atoms, the gray blue balls represent nitrogen atoms, and the bronze balls represent iron atoms.
(a) Npyri; (b) Npyrr; (c) Ngrap; (d) Cpyri; (e) Cpyrr; (f) Cgrap.
(a) FeN3; (b) FeN4; (c) FeN5; (d) FeN6.
(a) N doping; (b) Fe single atom loading.
(a) ηOER vs ΔGOOH*-ΔGO* curves on N or C atoms; (b) ηORR vs ΔGOOH* curve on N or C atoms; (c) ηOER vs ΔGOOH*-ΔGO* curve on Fe single atom; (d) ηORR vs ΔGOH* curve on Fe single atom
(a) N doping; (b) Fe single atom loading.
(a) Npyri; (b) Npyrr; (c) Ngrap; (d) Cpyri; (e) Cpyrr; (f) Cgrap.
(a) FeN3; (b) FeN4; (c) FeN5; (d) FeN6.