Citation: Shiqian WEI, Xinyu TIAN, Hong LIU, Maoxia CHEN, Fan TANG, Qiang FAN, Weifeng FAN, Yu HU. Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102 shu

Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms

  • Corresponding author: Yu HU, huyugucas@126.com
  • Received Date: 25 March 2025
    Revised Date: 14 July 2025

Figures(10)

  • Different types of nitrogen (pyridine nitrogen, pyrrole nitrogen, graphite nitrogen) were doped and iron single atom was loaded on graphene to construct the Fe-N-C structures, and the coordination number (x=3-6) of pyridine nitrogen and iron single atom was changed to study the reaction mechanism of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) based on the first-principles method. It is found that nitrogen doping and iron single-atom loading both are beneficial to increase the OER/ORR activity of graphene, but for the iron single atoms, or the nitrogen atoms, or the carbon atoms adjacent to nitrogen atoms, these active sites show different catalytic activity. The carbon atom next to graphite nitrogen in Fe-N-C is the best OER active site, while the iron single atom formed a tetra-coordination structure with pyridine nitrogen is the best ORR active site.
  • 加载中
    1. [1]

      ZHAO X M, LIU X, HUANG B Y, WANG P, PEI Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe)[J]. J. Mater. Chem. A, 2019, 7: 24583-24593  doi: 10.1039/C9TA08661G

    2. [2]

      YANG C C, ZAI S F, ZHOU Y T, DU L, JIANG Q. Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER[J]. Adv. Energy Mater., 2019, 29: 1901949

    3. [3]

      LEE M S, WHANG D R, SONG Y H, KIM J T, YANG M H, CHOI U H, CHANG D W. Effects of pyridine and pyrrole moieties on supercapacitive properties of imine-rich nitrogen-doped graphene[J]. Carbon, 2019, 152: 915-923  doi: 10.1016/j.carbon.2019.06.082

    4. [4]

      LAI J S, ELLIS M W, IEEE F. Fuel cell power systems and applications[J]. Proc. IEEE, 2017, 105: 2166-2190  doi: 10.1109/JPROC.2017.2723561

    5. [5]

      TIAN G L, ZHAO M Q, YU D S, KONG X Y, HUANG J Q, ZHANG Q, WEI F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction[J]. Small, 2014, 10: 2251-2259  doi: 10.1002/smll.201303715

    6. [6]

      JIA H L, LI H C, JI P C, TENG Y, GUAN M Y. Preparation and performance of nitrogen-doped carbon nanotube-supported Co3O4 oxygen reduction electrocatalysts[J]. Chinese J. Inorg. Chem., 2024, 40(4): 693-700  doi: 10.11862/CJIC.20230402

    7. [7]

      WANG Q C, WANG J, LEI Y P, CHEN Z Y, SONG Y, LUO S B. Research progress on the application of carbon nanotube-based non-precious metal catalysts in electrocatalytic redox[J]. Chinese J. Inorg. Chem., 2018, 34(5): 807-822  doi: 10.11862/CJIC.2018.101

    8. [8]

      YANG Z B, YUE T L, YU X N, WU M M. Electrocatalytic properties of cobalt-doped cerium oxide nanoparticles[J]. Chinese J. Inorg. Chem., 2018, 33(8): 845-853  doi: 10.15541/jim20170516

    9. [9]

      WANG C, HUANG H X, XIAO Y, LIANG D M. Preparation and oxygen catalytic properties of g-C3N4/double perovskite composites[J]. Chinese J. Inorg. Chem., 2019, 35(2): 254-262

    10. [10]

      LIU Y, DUAN X D, REN S S, GE F Y, ZHENG H G. Application of metal-organic frameworks and their derivatives in water electrolysis and zinc-air batteries[J]. Chinese J. Inorg. Chem., 2024, 40(1): 15-32

    11. [11]

      LIM J, JUNG J W, KIM N Y, LEE G Y, LEE H J, LEE Y, CHOI D S, YOON G R, KIM Y H, KIM D, KIM S O. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery[J]. Energy Storage Mater., 2020, 32: 517-524  doi: 10.1016/j.ensm.2020.06.034

    12. [12]

      LI Y W, ZHANG W J, LI J, MA H Y, DU H M, LI D C, WANG S N, ZHAO J S, DOU J M, XU L Q. Fe-MOF derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air battery[J]. ACS Appl. Mater. Interfaces, 2020, 12(40): 44710-44719  doi: 10.1021/acsami.0c11945

    13. [13]

      AHMED N, AMER A, ALI B A, BIBY A H, MESBAH Y I, ALLAM N K. Boosting the cyclic stability and supercapacitive performance of graphene hydrogels via excessive nitrogen doping: Experimental and DFT insights[J]. Sustain. Mater. Technol., 2020, 25: 00206

    14. [14]

      REY-RAAP N, SANTOS-GOMEZ L D, ARENILLAS A. Carbons for fuel cell energy generation[J]. Carbon, 2024, 228: 119291  doi: 10.1016/j.carbon.2024.119291

    15. [15]

    16. [16]

      ZHOU N, WANG N, WU Z X, LI L G. Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: A Review[J]. Catalysts, 2018, 8(11): 509  doi: 10.3390/catal8110509

    17. [17]

      NING X M, LI Y H, MING J Y, WANG Q, WANG H J, CAO Y H, PENG F, YANG Y H, YU H. Electronic synergism of pyridinic and graphitic nitrogen on N-doped carbons for the oxygen reduction reaction[J]. Chem. Sci., 2019, 10: 1589-1596  doi: 10.1039/C8SC04596H

    18. [18]

      ZHOU T S, MA R G, ZHANG T, LI Z H, YANG M H, LIU Q, ZHU Y F, WANG J C. Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction[J]. J. Colloid Interface Sci., 2020, 536(15): 42-52

    19. [19]

      ZHANG W Z, DIJK B V, WU L F, MAHEU C, TUDOR V, HOFMANN J P, JIANG L, HETTERSCHEID D, SCHNEIDER G F. Role of vacancy defects and nitrogen dopants for the reduction of oxygen on graphene[J]. ACS Catal., 2024, 14: 11065-11075  doi: 10.1021/acscatal.4c01713

    20. [20]

      DING W, WEI Z D, CHEN S G, QI X Q, YANG T, HU J S, WANG D, WAN L J, ALVI S F, LI L. Space-confinement-induced synthesis of pyridinic and pyrrolic nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angew. Chem. ‒Int. Edit., 2013, 52(45): 11755-11759  doi: 10.1002/anie.201303924

    21. [21]

      YANG H B, MIAO J W, HUNG S F, CHEN J Z, TAO H B, WANG X Z, ZHANG L P, CHEN R, GAO J J, CHEN H M, DAI L M, LIU B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Sci. Adv., 2016, 2(4): e1501122  doi: 10.1126/sciadv.1501122

    22. [22]

      GUO D H, SHIBUYA R, AKIBA C, SAJI S, KONDO T, NAKAMURA J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365  doi: 10.1126/science.aad0832

    23. [23]

      PAN Y, LIU S J, SUN K, CHEN X, WANG B, WU K L, CAO X, CHEONG W C, SHEN R G, HAN A J, CHAN Z, ZHENG L R, LUO J, LIN Y, LIU Y Q, WANG D S, ZHANG Q, CHEN C, LI Y D. Bimetallic Zn/Fe polyphthalocyanine derived single-atom FeN4 catalytic site: A superior tri-functional catalyst for overall water splitting and Zn-air battery[J]. Angew. Chem. ‒Int. Edit., 2018, 57(28): 8614-8618  doi: 10.1002/anie.201804349

    24. [24]

      LI Y C, LIU X F, ZHENG L R, SHANG J X, WAN X, HU R M, GUO X, HONG S, SHUI J L. Preparation of Fe-N-C catalysts with FeNx (x=1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells[J]. J. Mater. Chem. A, 2019, 7(45): 26147-26153  doi: 10.1039/C9TA08532G

    25. [25]

      LIU J L, XIAO J X, LUO B C, TIAN E K, WATERHOUSE G I N. Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation[J]. Chem. Eng. J., 2022, 427: 132038  doi: 10.1016/j.cej.2021.132038

    26. [26]

      WEI S Q, LIU X R, ZHAO Y S, CHEN M X, LÜ S Z, FAN Q, WANG F, HU Y. Electrocatalytic performance of MNxO4-x as active sites for ORR/OER[J]. Rare Metal Mat. Eng. 2024, 53(8): 2250-2258

    27. [27]

      FAN Q, HOU P F, CHOI C, WU T S, HONG S, LI F, SOO Y L, KANG P, JUNG Y S, SUN Z Y. Activation of Ni particles into single Ni-N atoms for efffcient electrochemical reduction of CO2[J]. Adv. Energy Mater., 2019, 10(5): 1903068

    28. [28]

      KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50  doi: 10.1016/0927-0256(96)00008-0

    29. [29]

      JOHN P P, WANG Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33(12): 8800-8802  doi: 10.1103/PhysRevB.33.8800

    30. [30]

      KASPRZHITSKII A, KRUGLIKOV A, ERMOLOV Y, DOLGOVA A. Dataset on the crystal structure and electronic properties of kaolinite edge surfaces[J]. Data Brief, 2024, 54: 110498  doi: 10.1016/j.dib.2024.110498

    31. [31]

      GUO X Y, LIU S R, GU J X, ZHANG S L, CHEN Z F, HUANG S P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. J. Am. Chem. Soc., 2020, 142(12): 5709-5721  doi: 10.1021/jacs.9b13349

    32. [32]

      TANG Y N, CHEN W G, WU B J, ZHAO G, LIU Z Y, DAI X Q. Formation mechanism, geometric stability and catalytic activity of single Fe atom supported on N-doped graphene[J]. ChemPhysChem, 2019, 20(19): 2506-2517  doi: 10.1002/cphc.201900666

    33. [33]

      XIE T Y, WANG P, TIAN C F, ZHAO G Z, JIA J F, HE C Z, ZHAO C X, WU H S. The investigation of adsorption behavior of gas molecules on FeN3-doped graphene[J]. J. Sens., 2022: 9306741

    34. [34]

      LI X F, LI Q K, CHENG J, LIU L L, YAN Q, WU Y C, ZHANG X H, WANG Z Y, QIU Q, LUO Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene[J]. J. Am. Chem. Soc., 2016, 138(28): 8706-8709  doi: 10.1021/jacs.6b04778

    35. [35]

      HE J X, LI Q Y, LIU D M, FENG Z Y, QIN C C, WANG W J, YANG J, LIU L, XIAO J D, CHEN S, CHEN X F, WANG J Z, YUAN C Z, YANG Z K. Biomimetic square pyramidal N1-Fe-N4 single sites with optimized electron distribution for the efficient oxygen reduction reaction[J]. Small, 2025, 21: 2500897  doi: 10.1002/smll.202500897

    36. [36]

      ZHANG H N, LI J, XI S B, DU Y H, HAI X, WANG J Y, XU H M, WU G, ZHANG J, LU J, WANG J Z. A Graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angew. Chem. ‒Int. Edit., 2019, 58: 14871-14876  doi: 10.1002/anie.201906079

    37. [37]

      XU B L, LI S S, ZHENG L R, LIU Y H, HAN A L, ZHENG J, HUANG Z J, XIE H J, FAN K L, GAO L Z, LIU H Y. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy[J]. Adv. Mater., 2022, 34: 2107088  doi: 10.1002/adma.202107088

    38. [38]

      DU Q, ZHU C Q, YUE C L, CUN F X, DU Z L, LIU F Q, LI A M. Anchoring atomically dispersed FeN5 sites on porous and defect-rich biochar via cascade regulation strategy for efficient Fenton-like catalysis[J]. Appl. Catal. B‒Environ. Energy, 2024, 343: 123570  doi: 10.1016/j.apcatb.2023.123570

    39. [39]

      LU N, LI Y L, WANG J Q, LI G L, LI G W, LIU F, TANG C Y. Precise manipulation of iron spin states in single-atom catalytic membranes for singlet oxygen selective production[J]. Mater. Horiz., 2025, 12: 1944-1952  doi: 10.1039/D4MH01479K

    40. [40]

      WANG Z W, WANG W L, WANG J, YUAN Y, WU Q Y, HU H Y. High‑valent iron‑oxo species mediated cyclic oxidation through single‑atom≡Fe‑N6 sites with high peroxymonosulfate utilization rate[J]. Appl. Catal. B‒Environ. Energy, 2022, 305: 121049  doi: 10.1016/j.apcatb.2021.121049

    41. [41]

      TANG B, JI Q Q, ZHANG X L, SHI R C, MA J, ZHUANG Z C, SUN M, WANG H J, LIU R Q, LIU H J, WANG C, GUO Z Y, LU L L, JIANG P, WANG D S, YAN W S. Symmetry breaking of FeN4 moiety via edge defects for acidic oxygen reduction reaction[J]. Angew. Chem. ‒Int. Edit., 2025, 64: e202424135  doi: 10.1002/anie.202424135

    42. [42]

      NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, LINDQVIST L, KITCHIN J R, BLIGAARD T, JÓNSSON H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46): 17886-17892  doi: 10.1021/jp047349j

    43. [43]

      YANG B Y, GAO J P, XIE M H, ZUO S S, KANG H Y, SUN Y, XU X Y, WANG W, GAO C J, LIU Y, YAN J. N-self-doped porous carbon derived from animal-heart as an electrocatalyst for efficient reduction of oxygen[J]. J. Colloid Interface Sci., 2020, 579: 832-841

    44. [44]

      OU C R, CHEN H, WANG H, LIAO Y L, LI R, LIU H B. A novel in situ synthesis of nitrogen-doped graphene with excellent electrocatalytic performance for oxygen reduction reaction[J]. Electrochim. Acta, 2021, 380: 138256

    45. [45]

      LUO M S, SHAO C K, SONG H Q, XIA L M, GU J X. Effect of structure of metal-free nitrogen-doped coal-based carbon on catalytic oxygen reduction[J]. Fuel, 2025, 381: 133306

    46. [46]

      JIA N, SHI S F, YANG J X, JIA Y, WENG Q, CHEN P. Carbon material with high pyridine/graphite nitrogen content: An efficient electrocatalyst for the oxygen reduction reaction[J]. New J. Chem., 2024, 48: 640-645

    47. [47]

      LU X B, YANG X, WANG L M, LI F, ZHANG H J, LI J, ZAN L X, BRON M. N-doped carbon nanotubes with high amount of graphitic nitrogen as an excellent electrocatalyst for water splitting in alkaline solution[J]. J. Electroanal. Chem., 2023, 931: 117160

    48. [48]

      LIU J F, SUN G, WANG T, NING K, YUAN B X, PAN W G. The oxygen reduction activity of nitrogen-doped graphene[J]. Pol. J. Chem. Technol., 2022, 24(3): 29-34

    49. [49]

      JIANG H, GU J X, ZHENG X S, LIU M, QIU X Q, WANG L B, LI W Z, CHEN Z F, JI X B, LI J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy Environ. Sci., 2019, 12: 322-333

    50. [50]

      CHEN T, TAKAHASHI S, WAKI K. Exploring active sites in nitrogen doped carbon nanotube based electrocatalyst[C]//JONES D J, BUECHI F, SWIDERLYONS K E, PINTAURO P N, UCHIDA H, SCHMIDT T J, PIVOVAR B S, GASTEIGER H A, WEBER A Z, SHIRVANIAN P A, FENTON J M, FULLER T F, SHINOHARA K, PERRY K A, STRASSER P, COUTANCEAU C, MITSUSHIMA S, MANTZ R A, NARAYAN S, RAMANI V, AYERS K E, KIM Y T, XU H. ECS Transactions: Vol. 80. [S. l. ]: The Electrochemical Society, 2017: 801-806

    51. [51]

      BOPPELLA R, AUSTERIA P M, KIM Y J, KIM E, SONH I, EOM Y, KUMAR D P, BALAMURUGAN M, SIM E, KIM D H, KIM T K. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: Identifying the role of pyrrolic-N and synergistic electrocatalysis[J]. Adv. Funct. Mater., 2022, 32: 2202351

    52. [52]

      ZHANG Z, LIANG Y, TU Y C, CHEN R X, WU L H, ZHU J F, DENG D H. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction[J]. Cell Rep. Phys. Sci., 2020, 1: 100145

    53. [53]

      LI L, CHEN Y J, XING H R, LI N, XIA J W, QIAN X Y, XU H, LI W G, YIN F X, HE G Y, CHEN H Q. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries[J]. Nano Res., 2022, 15: 8056-8064

    54. [54]

    55. [55]

      ZHANG S S, QIN Y Y, DING S J, SU Y Q. A DFT study on the activity origin of Fe-N-C sites for oxygen reduction reaction[J]. ChemPhysChem, 2022, 23: e202200165

    56. [56]

      MAO Y, CHEN J F, WANG H F, HU P. Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis[J]. Chin. J. Catal., 2015, 36(9): 1596-1605

    57. [57]

      LU S, HUYNH H L, LOU F L, GUO K, YU Z X. Single transition metal atom embedded antimonene monolayers as efficient trifunctional electrocatalysts for the HER, OER and ORR: A density functional theory study[J]. Nanoscale, 2021, 13: 12885

    58. [58]

      ZHOU X Y, JIN Z Y, ZHANG J Z, HU K L, LIU S D, QIU H J, LIU X. Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C[J]. Nanoscale, 2023, 15: 2276-2284

    59. [59]

      LI X Y, LIU J J, CAI Q H, KAN Z W, LIU S, ZHAO J X. Engineering d-band center of iron single atom site through boron incorporation to trigger the efficient bifunctional oxygen electrocatalysis[J]. J. Am. Chem. Soc., 2022, 628: 331-342

    60. [60]

      BLIGAARD T, NORSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J. Catal., 2004, 224(1): 206-217

    61. [61]

      DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. J. Phys. Chem., 1993, 97: 8617-8624

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    8. [8]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    11. [11]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    13. [13]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    14. [14]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    19. [19]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    20. [20]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

Metrics
  • PDF Downloads(0)
  • Abstract views(155)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return