Citation: Aoran LIU, Rui LI, Zongyao WANG, Penghui SHANG, Jiawei WAN, Dan WANG. Hollow multi-shelled structure materials for catalytic applications[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036 shu

Hollow multi-shelled structure materials for catalytic applications

Figures(5)

  • Hollow multi-shelled structure (HoMS) is the novel multifunctional structural system, which are constructed with nanoparticles as structural units, featuring two or more shells, multiple interfaces, and numerous channels and demonstrating outstanding properties in energy conversion and mass transfer. In recent years, owing to the breakthroughs in synthetic methods, the diversity of composition and structure of HoMS has been greatly enriched, showing broad application prospects in energy, catalysis, environment and other fields. This review focuses on the research status of HoMS for catalytic applications. Firstly, the new synthesis method for HoMS, namely the sequential templating approach, is introduced from both practical and theoretical perspectives. Then, it summarizes and discusses the structure-performance relationship between the shell structure and catalytic performance. The unique temporal-spatial ordering property of mass transport in HoMS and the major breakthroughs it brings in catalytic applications are discussed. Finally, it looks forward to the opportunities and challenges in the development of HoMS.
  • 加载中
    1. [1]

      MAO D, WAN J W, WANG J Y, WANG D. Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures[J]. Adv. Mater., 2019, 31(38): 1802874  doi: 10.1002/adma.201802874

    2. [2]

      WANG J Y, WAN J W, YANG N L, LI Q, WANG D. Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour[J]. Nat. Rev. Chem., 2020, 4(3): 159-168  doi: 10.1038/s41570-020-0161-8

    3. [3]

      WANG J Y, WAN J W, WANG D. Hollow multishelled structures for promising applications: Understanding the structure-performance correlation[J]. Acc. Chem. Res., 2019, 52(8): 2169-2178  doi: 10.1021/acs.accounts.9b00112

    4. [4]

      WANG J Y, TANG H J, WANG H, YU R B, WANG D. Multi-shelled hollow micro-/nanostructures: Promising platforms for lithium-ion batteries[J]. Mater. Chem. Front., 2017, 1(3): 414-430  doi: 10.1039/C6QM00273K

    5. [5]

      ZHU M Y, TANG J J, WEI W J, LI S J. Recent progress in the syntheses and applications of multishelled hollow nanostructures[J]. Mater. Chem. Front., 2020, 4(4): 1105-1149  doi: 10.1039/C9QM00700H

    6. [6]

      ZHAO J L, YANG M, YANG N L, WANG J Y, WANG D. Hollow micro-/nanostructure reviving lithium-sulfur batteries[J]. Chem. Res. Chin. Univ., 2020, 36(3): 313-319  doi: 10.1007/s40242-020-0115-2

    7. [7]

      WANG Z, YANG N L, WANG D. When hollow multishelled structures (HoMSs) meet metal-organic frameworks (MOFs)[J]. Chem. Sci., 2020, 11(21): 5359-5368  doi: 10.1039/D0SC01284J

    8. [8]

      MAO D, WANG C, Li W, ZHOU L, LIU J, ZHENG Z J, ZHAO Y, CAO A M, WANG S T, HUANG J X, HOU F W, CHEN H Y, MAI L Q, YU R B, WANG L Z, LU Y F, YU C Z, YANG Q H, YANG Z Z, ZENG H C, ZHAO H J, TANG Z Y, ZHAO D Y, WANG D. Hollow multishelled structure: Synthesis chemistry and application[J]. Chem. Res. Chin. Univ., 2024, 40(3): 346-393  doi: 10.1007/s40242-024-4070-0

    9. [9]

      CHEN X B, YANG N L, WANG Y L, HE H Y, WANG J Y, WAN J W, JIANG H Y, XU B, WANG L M, YU R B, TONG L M, GU L, XIONG Q H, CHEN C Y, ZHANG S J, WANG D. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites[J]. Adv. Mater., 2022, 34(7): 2107400  doi: 10.1002/adma.202107400

    10. [10]

      WEI Y Z, WAN J W, WANG J Y, ZHANG X, YU R B, YANG N L, WANG D. Hollow multishelled structured SrTiO3 with La/Rh co-doping for enhanced photocatalytic water splitting under visible light[J]. Small, 2021, 17(22): 2005345  doi: 10.1002/smll.202005345

    11. [11]

      YOU F F, WAN J W, QI J, MAO D, YANG N L, ZHANG Q H, GU L, WANG D. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction[J]. Angew. Chem.‒Int. Edit., 2020, 59(2): 721-724  doi: 10.1002/anie.201912069

    12. [12]

      WEI Y Z, YOU F F, ZHAO D C, WAN J W, GU L, WANG D. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2[J]. Angew. Chem.‒Int. Edit., 2022, 61(49): e202212049  doi: 10.1002/anie.202212049

    13. [13]

      WANG L, WAN J W, ZHAO Y S, YANG N L, WANG D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction [J]. J. Am. Chem. Soc., 2019, 141(6): 2238-2241  doi: 10.1021/jacs.8b13528

    14. [14]

      HOU P, LI D, YANG N L, WAN J W, ZHANG C H, ZHANG X Q, JIANG H Y, ZHANG Q H, GU L, WANG D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting[J]. Angew. Chem.‒Int. Edit., 2021, 60(13): 6926-6931  doi: 10.1002/anie.202016285

    15. [15]

      QIN M, ZHANG L M, ZHAO X R, WU H J. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application[J]. Adv. Sci., 2021, 8(8): 2004640  doi: 10.1002/advs.202004640

    16. [16]

      WANG Z J, QI J, YANG N L, YU R B, WANG D. Core-shell nano/microstructures for heterogeneous tandem catalysis[J]. Mater. Chem. Front., 2021, 5(3): 1126-1139  doi: 10.1039/D0QM00538J

    17. [17]

      DIAZ-LOPEZ E, COMAS-VIVES A. Oxygen electronic character at the interface tunes catalytic selectivity[J]. Chem, 2020, 6(11): 2865-2868  doi: 10.1016/j.chempr.2020.10.013

    18. [18]

      QIAN J F, LIU P, XIAO Y, JIANG Y, CAO Y L, AI X P, YANG H X. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells[J]. Adv. Mater., 2009, 21(36): 3663-3667  doi: 10.1002/adma.200900525

    19. [19]

      KIM J W, CHOI S H, LILLEHEI P T, CHU S H, KING G C, WATT G D. Cobalt oxide hollow nanoparticles derived by bio-templating[J]. Chem. Commun., 2005(32): 4101-4103  doi: 10.1039/b505097a

    20. [20]

      YANG M, MA J, NIU Z W, DONG X, XU H F, MENG Z K, JIN Z G, LU Y F, HU Z B, YANG Z Z. Synthesis of spheres with complex structures using hollow latex cages as templates[J]. Adv. Funct. Mater., 2005, 15(9): 1523-1528  doi: 10.1002/adfm.200500070

    21. [21]

      SU F M, WAN J W, WANG D. Hollow multi-shelled structure photoelectric materials: multiple shells bring novel properties[J]. Chem. Res. Chin. Univ., 2024, 40(3): 413-427  doi: 10.1007/s40242-024-4061-1

    22. [22]

      SU F, ZHAO X S, WANG Y, WANG L, LEE J Y. Hollow carbon spheres with a controllable shell structure[J]. J. Mater. Chem., 2006, 16(45): 4413-4419  doi: 10.1039/b609971h

    23. [23]

      XU H L, WANG W Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall[J]. Angew. Chem.‒Int. Edit., 2007, 119(9): 1511-1514  doi: 10.1002/ange.200603895

    24. [24]

      WU C Z, ZHANG X D, NING B, YANG J L, XIE Y. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy[J]. Inorg. Chem., 2009, 48(13): 6044-6054  doi: 10.1021/ic900416v

    25. [25]

      SUN X M, LI Y D. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew. Chem.‒Int. Edit., 2004, 43(29): 3827-3831  doi: 10.1002/anie.200353212

    26. [26]

      LI Z M, LAI X Y, WANG H, MAO D, XING C J, WANG D. General synthesis of homogeneous hollow core-shell ferrite microspheres[J]. J. Phys. Chem. C, 2009, 113(7): 2792-2797  doi: 10.1021/jp8094787

    27. [27]

      LAI X Y, LI J, KORGEL B A, DONG Z H, LI Z M, SU F B, DU J, WANG D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres[J]. Angew. Chem.‒Int. Edit., 2011, 12(50): 2738-2741

    28. [28]

      WEI Y Z, CHENG Y P, ZHAO D C, FENG Y, WEI P, WANG, J Y, GE W, WANG D. A universal formation mechanism of hollow multi-shelled structures dominated by concentration waves[J]. Angew. Chem.‒Int. Edit., 2023, 62(28): e202302621  doi: 10.1002/anie.202302621

    29. [29]

      WANG J Y, TANG H J, ZHANG L J, REN H, YU R B, JIN Q, QI J, MAO D, YANG M, WANG Y, LIU P R, ZHANG Y, WEN Y R, GU L, MA G H, SU Z G, TANG Z Y, ZHAO H J, WANG D. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries[J]. Nat. Energy, 2016, 1(5): 1-9

    30. [30]

      LI D W, ZHAO X X, YU R B, WANG B, WANG H, WANG D. Formation of multi-shelled nickel-based sulfide hollow spheres for rechargeable alkaline batteries[J]. Inorg. Chem. Front., 2018, 5(3): 535-540  doi: 10.1039/C7QI00760D

    31. [31]

      WILLIAMS B P, YOUNG A P, ANDONI I, HAN Y, LO W S, GOLDEN M, YANG J, LYU L M, KUO C H, EVANS J W, HUANG W Y, TSUNG C K. Strain-enhanced metallic intermixing in shape-controlled multilayered core-shell nanostructures: Toward shaped intermetallics[J]. Angew. Chem.‒Int. Edit., 2020, 59(26): 10574-10580  doi: 10.1002/anie.202001067

    32. [32]

      TAN D X, ZHANG J L, YAO L, TAN X N, CHENG X Y, WAN Q, HAN B X, ZHENG L R, ZHANG J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene[J]. Nano Res., 2020, 13(3): 768-774  doi: 10.1007/s12274-020-2692-1

    33. [33]

      ZONG L B, XU J, JIANG S Y, ZHAO K, WANG Z M, LIU P R, ZHAO H J, CHEN J, XING X R, RU R B. Composite yttrium-carbonaceous spheres templated multi-shell YVO4 hollow spheres with superior upconversion photoluminescence[J]. Adv. Mater., 2017, 29(9): 1604377  doi: 10.1002/adma.201604377

    34. [34]

      JIAO C W, WANG Z M, ZHAO X X, WANG H, WANG J, YU R B, WANG D. Triple-shelled manganese-cobalt oxide hollow dodecahedra with highly enhanced performance for rechargeable alkaline batteries[J]. Angew. Chem.‒Int. Edit., 2019, 58(4): 996-1001  doi: 10.1002/anie.201811683

    35. [35]

      ZHU Y J, YANG M, HUANG Q Y, WANG D R, YU R B, WANG J Y, ZHENG Z J, WANG D. V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries[J]. Adv. Mater., 2020, 32(7): 1906205  doi: 10.1002/adma.201906205

    36. [36]

      WANG C, WANG J Y, HU W P, WANG D. Controllable synthesis of hollow multishell structured Co3O4 with improved rate performance and cyclic stability for supercapacitors[J]. Chem. Res. Chin. Univ., 2020, 36(1): 68-73  doi: 10.1007/s40242-019-0040-3

    37. [37]

      WANG J Y, CUI Y, WANG D. Design of hollow nanostructures for energy storage, conversion and production[J]. Adv. Mater., 2019, 31(38): 1801993  doi: 10.1002/adma.201801993

    38. [38]

      XIE G X, ZHANG J N, MA X B. Compartmentalization of multiple catalysts into outer and inner shells of hollow mesoporous nanospheres for heterogeneous multi-catalyzed/multi-component asymmetric organocascade[J]. ACS Catal., 2019, 9(10): 9081-9086  doi: 10.1021/acscatal.9b01608

    39. [39]

      ZHU W, CHEN Z, PAN Y, DAI R Y, WU Y, ZHUANG Z B, WANG D S, PENG Q, CHEN C, LI Y D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction[J]. Adv. Mater., 2019, 31(38): 1800426  doi: 10.1002/adma.201800426

    40. [40]

      DENG Z S, CAO J Z, HU S C, WU S Q, XING M Y, ZHANG J L. Combing hollow shell structure and Z-scheme heterojunction construction for promoting CO2 photoreduction[J]. J. Phys. Chem. C, 2023, 127(17): 8071-8082  doi: 10.1021/acs.jpcc.3c01375

    41. [41]

      WEI Y Z, WAN J W, YANG N L, YANG Y, MA Y W, WANG S C, WANG J Y, YU R B, GU L, WANG L H, WANG L Z, HUANG W, WANG D. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores[J]. Natl. Sci. Rev., 2020, 7(11): 1638-1646  doi: 10.1093/nsr/nwaa059

    42. [42]

      ZHANG H B, ZHOU X D, YUAN M Y, XIONG X H, LV X W, LIU Y H, LV H L, LAI Y X, ZHANG J C, ZHANG H R, PAN D, CHE R C. Highly selective nano-interface engineering in multishelled nanocubes for enhanced broadband electromagnetic attenuation[J]. Adv. Funct. Mater., 2024, 34(17): 2313829  doi: 10.1002/adfm.202313829

    43. [43]

      QIAN X, ZHANG Y H, WU Z C, ZHANG R X, LI X H, WANG M, CHE R C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance[J]. Small, 2021, 17(30): 2100283  doi: 10.1002/smll.202100283

    44. [44]

      GAO S W, NV W, LI S, LI D M, CUI Z M, YUE G C, LIU J C, ZHAO X X, JIANG L, ZHAO Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries[J]. Angew. Chem.‒Int. Edit., 2020, 59(6): 2465-2472  doi: 10.1002/anie.201913170

    45. [45]

      WEI P, WANG H, YANG M, WANG J Y, WANG D. Relocatable hollow multishelled structure-based membrane enables dendrite-free lithium deposition for ultrastable lithium metal batteries[J]. Adv. Energy Mater., 2024, 14(22): 2400108  doi: 10.1002/aenm.202400108

    46. [46]

      LI H L, WANG Y T, ZHANG J W, ZHU L, SHI J, CHEN B, HU Y, ZHANG H, DENG X, PENG Y. The design and synthesis of spinel one-dimensional multi-shelled nanostructures for Li-ion batteries[J]. Nanoscale, 2022, 14(20): 7692-7701  doi: 10.1039/D2NR00627H

    47. [47]

      BI R, XU N, REN H, YANG N L, SUN Y G, CAO A M, RU R B, WANG D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors[J]. Angew. Chem.‒Int. Edit., 2020, 132(12): 4895-4898  doi: 10.1002/ange.201914680

    48. [48]

      ZHAO D C, YANG N L, XU L K, DU J, YANG Y, WANG D. Hollow structures as drug carriers: Recognition, response, and release[J]. Nano Res., 2022: 1-19

    49. [49]

      ZHAO D C, WEI Y Z, JIN Q, YANG N L, YANG Y, WANG D. PEG-functionalized hollow multishelled structures with on-off switch and rate-regulation for controllable antimicrobial release[J]. Angew. Chem.‒Int. Edit., 2022, 61(36): e202206807  doi: 10.1002/anie.202206807

    50. [50]

      ZHAO D C, WEI Y Z, XIONG J, GAO C S, WANG D. Response and regulation of the microenvironment based on hollow structured drug delivery systems[J]. Adv. Funct. Mater., 2023, 33(31): 2300681  doi: 10.1002/adfm.202300681

    51. [51]

      DU L Y, WANG D X, GU K K, ZHANG M Z. Construction of PdO-decorated double-shell ZnSnO3 hollow microspheres for n-propanol detection at low temperature[J]. Inorg. Chem. Front., 2021, 8(3): 787-795  doi: 10.1039/D0QI01292K

    52. [52]

      CHEN Q, ZHANG Y H, MA S Y, WANG Y H, WANG P Y, ZHANG G H, GENGZANG D J, JIAO H Y, WANG M X, CHEN W J. Multishelled NiO/NiCo2O4 hollow microspheres derived from bimetal-organic frameworks as high-performance sensing material for acetone detection[J]. J. Hazard. Mater., 2021, 415: 125662  doi: 10.1016/j.jhazmat.2021.125662

    53. [53]

      LIEN D H, DONG Z H, RETAMAL J R D, WANG H P, WEI T C, WANG D, HE J H, CUI Y. Resonance-enhanced absorption in hollow nanoshell spheres with omnidirectional detection and high responsivity and speed[J]. Adv. Mater., 2018, 30(34): 1801972  doi: 10.1002/adma.201801972

    54. [54]

      SONG D D, XU X Y, HUANG X G, LI G Q, ZHAO Y S, GAO F M. Oriented design of transition-metal-oxide hollow multishelled micropolyhedron derived from bimetal-organic frameworks for the electrochemical detection of multipesticide residues[J]. J Agric. Food Chem., 2023, 71(5): 2600-2609  doi: 10.1021/acs.jafc.2c08818

    55. [55]

      XU K, KAN Z W, ZHANG F Y, QU Y, LI S Q, LIU S. Hollow multi-shelled structural SnO2 with multiple spatial confinement for ethanol gas sensing[J]. Mater. Lett., 2023, 338: 134070  doi: 10.1016/j.matlet.2023.134070

    56. [56]

      WANG Y Z, LIU C B, QIAO L, ZENG Y, TIAN H W, ZHENG W T. Localized inside-out Ostwald ripening of hybrid double-shelled cages into SnO2 triple-shelled hollow cubes for improved toluene detection[J]. Nanoscale, 2020, 12(3): 2011-2021  doi: 10.1039/C9NR07489A

    57. [57]

      REN H, YU R B, QI J, ZHANG L J, JIN Q, WANG D. Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance[J]. Adv. Mater., 2019, 31(10): 1805754  doi: 10.1002/adma.201805754

    58. [58]

      WANG H, MAO D, QI J, ZHANG Q H, MA X H, SONG S Y, GU L, YU R B, WANG D. Hollow multishelled structure of heterogeneous Co3O4-CeO2-x nanocomposite for CO catalytic oxidation[J]. Adv. Funct. Mater., 2019, 29(15): 1806588  doi: 10.1002/adfm.201806588

    59. [59]

      WANG C R, ZHANG L, AL-MAMUN M, DOU Y H, SU D W, WANG G X, ZHANG S Q, WANG D, ZHAO H J. A hollow-shell structured V2O5 electrode-based symmetric full Li-ion battery with highest capacity[J]. Adv. Energy Mater., 2019, 9(31): 1900909  doi: 10.1002/aenm.201900909

    60. [60]

      LI M, MAO D, WAN J W, WANG K F, ZHAI T Y, WANG D. Hollow multi-shell structured SnO2 with enhanced performance for ultraviolet photodetectors[J]. Inorg. Chem. Front., 2019, 6(8): 1968-1972  doi: 10.1039/C9QI00490D

    61. [61]

      WEI Y Z, WANG J Y, YU R B, WAN J W, WANG D. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting[J]. Angew. Chem.‒Int. Edit., 2019, 58(5): 1422-1426  doi: 10.1002/anie.201812364

    62. [62]

      TANG J Y, YAO J J, ZHANG X J, MA L, ZHANG T M, NIU Z, CHEN X Z, ZHAO L, JIANG L, SUN Y H. Multi-shell hollow FeP microspheres as efficient electrocatalyst for hydrogen evolution at all pH values[J]. Chem. J. Chinese Universities, 2019, 40(11): 2340-2347

    63. [63]

      CHEN H R, SHEN K, TAN Y P, LI Y W. Multishell hollow metal/ nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties[J]. ACS Nano, 2019, 13(7): 7800-7810  doi: 10.1021/acsnano.9b01953

    64. [64]

      MA X M, ZHANG X T, YANG L, WANG G, JIANG K, WU G, CUI W G, WEI Z P. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications[J]. Nanoscale, 2016, 8(16): 8687-8695  doi: 10.1039/C6NR00866F

    65. [65]

      BIE S Y, ZHU Y Q, SU J M, JIN C, LIU S H, YANG R Z, WU J. One-pot fabrication of yolk-shell structured La0.9Sr0.1CoO3 perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions[J]. J. Mater. Chem. A, 2015, 3(44): 22448-22453  doi: 10.1039/C5TA05271H

    66. [66]

      ZHAO Y, WU W L, LI J X, XU Z C, GUAN L H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(30): 5113-5118  doi: 10.1002/adma.201401191

    67. [67]

      PANG R, HU X J, ZHOU S Y, SUN C H, YAN J, SUN X M, XIAO S Z, CHEN P. Preparation of multi-shelled conductive polymer hollow microspheres by using Fe3O4 hollow spheres as sacrificial templates[J]. Chem. Commun., 2014, 50(83): 12493-12496  doi: 10.1039/C4CC05469E

    68. [68]

      LIAO Y L, ZHANG H W, QUE W X, ZHONG P, BAI F M, ZONG Z Y, WEN Q Y, CHEN W H. Activating the single-crystal TiO2 nanoparticle film with exposed {001} facets[J]. ACS Appl. Mater. Inter., 2013, 5(14): 6463-6466  doi: 10.1021/am401869e

    69. [69]

      QIN B, WANG Q, YAO W Q, CAI Y F, CHEN Y H, WANG P C, ZOU Y C, ZHENG X H, CAO J, QI J L, CAI W. Heterostructured Mn3O4-MnS multi-shelled hollow spheres for enhanced polysulfide regulation in lithium-sulfur batteries[J]. Energy Environm. Mater., 2023, 6(6): e12475  doi: 10.1002/eem2.12475

    70. [70]

      HE R H, LI S D, LIU H Y, ZHOU L. Hetero-structured Fe-Cr-O hollow multishelled spheres for stable sodium storage[J]. Mater. Chem. Front., 2022, 6(14): 1903-1911  doi: 10.1039/D2QM00295G

    71. [71]

      PARVIN N, MERUM D, MANDAL T K, JOO S W. Tunable synthesis of bimetallic hybrid multishelled hollow structure for high-performance aqueous alkaline batteries[J]. J. Energy Storage, 2023, 71: 108195  doi: 10.1016/j.est.2023.108195

    72. [72]

      HOU X Y, ZHOU G, AI D D, XI R H, YUAN Y X, KANG J L, CHEN H, TIAN J M, WANG J T. Hollow multi-shelled spherical Co3O4/CNTs composite as a superior anode material for lithium-ion batteries[J]. J. Alloys Compd, 2023, 967: 171649  doi: 10.1016/j.jallcom.2023.171649

    73. [73]

      ZHAN S H, CHEN X B, XU B, WANG L, TONG L M, YU R B, YANG N L, WANG D. Hollow multishelled structured graphdiyne realized radioactive water safe-discharging[J]. Nano Today, 2022, 47: 101626  doi: 10.1016/j.nantod.2022.101626

    74. [74]

      LI B, WANG J Y, BI R Y, YANG N L, WAN J W, JIANG H Y, GU L, DU J, CAO A M, GAO W, WANG D. Accurately localizing multiple nanoparticles in a multishelled matrix through shell-to-core evolution for maximizing energy-storage capability[J]. Adv. Mater., 2022, 34(18): 2200206  doi: 10.1002/adma.202200206

    75. [75]

      YANG H G, ZENG H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening[J]. J. Phys. Chem. B, 2004, 108(11): 3492-3495  doi: 10.1021/jp0377782

    76. [76]

      LIU B, ZENG H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J]. Small, 2005, 1(5): 566-571  doi: 10.1002/smll.200500020

    77. [77]

      WANG H, QI J, YANG N L, CUI W, WANG J Y, LI Q H, ZHANG Q H, YU X Q, GU L, LI J, YU R B, HUANG K K, SONG S Y, FENG S H, WANG D. Dual-defects adjusted crystal-field splitting of LaCo1-xNixO3-δ hollow multishelled structures for efficient oxygen evolution[J]. Angew. Chem.‒Int. Edit., 2020, 59(44): 19691-19695  doi: 10.1002/anie.202007077

    78. [78]

      ZHANG X, BI R Y, WANG J Y, ZHENG M, WANG J, YU R B, WANG D. Delicate Co-control of shell structure and sulfur vacancies in interlayer-expanded tungsten disulfide hollow sphere for fast and stable sodium storage[J]. Adv. Mater., 2023, 35(7): 2209354  doi: 10.1002/adma.202209354

    79. [79]

      WANG Z J, WEI Y Z, QI J, WANG J W, WANG Z M, YU R B, WANG D. Mass transfer modulation by hollow multi-shelled structures for high space-time yield synthesis of light olefins from syngas[J]. Adv. Funct. Mater., 2024, 34(27): 2316547  doi: 10.1002/adfm.202316547

    80. [80]

      ZHANG H G, ZHU Q S, ZHANG Y, WANG Y, ZHAO L, YU B. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties[J]. Adv. Funct. Mater., 2007, 17(15): 2766-2771  doi: 10.1002/adfm.200601146

    81. [81]

      LI B T, HUANG J, WANG X J. Copper-cobalt bimetallic oxides-doped alumina hollow spheres: A highly efficient catalyst for epoxidation of styrene[J]. Chem. Res. Chin. Univ., 2019, 35(1): 125-132  doi: 10.1007/s40242-018-8158-2

    82. [82]

      REN H, SUN J J, YU R B, YANG M, GU L, LIU P R, ZHAO H J, KISAILUS D, WANG D. Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries[J]. Chem. Sci., 2016, 7(1): 793-798  doi: 10.1039/C5SC03203B

    83. [83]

      YANG W Z, YANG J, DONG Y Z, MAO S M, GAO Z Z, YUE Z F, DILLON S J, XU H X, XU B X. Probing buckling and post-buckling deformation of hollow amorphous carbon nanospheres: In-situ experiment and theoretical analysis[J]. Carbon, 2018, 137: 411-418  doi: 10.1016/j.carbon.2018.05.047

    84. [84]

      ZHANG H, ZHANG S C, GUO B Y, YU L J, MA L L, HOU B X, LIU H Y, ZHANG S H, WANG J Y, SONG J J, TANG Y F, ZHAO X X. MoS2 hollow multishelled nanospheres doped Fe single atoms capable of fast phase transformation for fast-charging Na-ion batteries[J]. Angew. Chem.‒Int. Edit., 2024, 63(17): e202400285  doi: 10.1002/anie.202400285

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Xiaoyu DuHuan Wang . Tailoring mass transfer on electrochemical fixation of air-abundant molecules. Chinese Chemical Letters, 2025, 36(8): 110276-. doi: 10.1016/j.cclet.2024.110276

    6. [6]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    7. [7]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    10. [10]

      Jianning ZhangYihuai ZhangGuoxin MaJingchen ZhaoTao ZhangJian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516

    11. [11]

      Chao ZhaoChenyu GaoZhiyi YangTianyou CaoQian LuoZhijun Zhang . Whole brain lipid dyshomeostasis in depressive-like behavior young adult rats: Mapping by mass spectrometry imaging-based spatial omics. Chinese Chemical Letters, 2025, 36(10): 111089-. doi: 10.1016/j.cclet.2025.111089

    12. [12]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    13. [13]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    14. [14]

      Congcong WangKai ZhangBai Yang . Architecting double-shelled hollow carbon nanocages embedded bimetallic sites as bifunctional oxygen electrocatalyst for zinc-air batteries. Chinese Chemical Letters, 2025, 36(8): 110538-. doi: 10.1016/j.cclet.2024.110538

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    17. [17]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    18. [18]

      Xiaxi YaoXiuli HuFangcheng HuangXuhong WangXuekun HongDawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192

    19. [19]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(0)
  • Abstract views(24)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return