Citation: Rui LIU, Xinjun ZHOU, Tao WANG. Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033 shu

Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction

Figures(7)

  • A MOF-74-Mn/g-C3N4 photocatalyst with a Z-scheme heterojunction structure was synthesized via a hydrothermal method. Under visible-light irradiation, the degradation rate of tetracycline reached 95% within 60 min, which was 2.4 times that of the pure MOF-74-Mn and 1.8 times that of the pure g-C3N4. The results indicate that the MOF-74-Mn/g-C3N4 Z-scheme heterojunction can effectively achieve the spatial separation of photogenerated carriers, suppress the recombination of photogenerated electron-hole pairs, and accelerate the carrier, thus enhancing the photocatalytic degradation performance.
  • 加载中
    1. [1]

      LI S J, YAN R Y, CAI M J, JIANG W, ZHANG H M, LI X. Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification[J]. Mater. Sci. Technol., 2023, 164: 59-67  doi: 10.1016/j.jmst.2023.05.009

    2. [2]

      WANG W, HAN Q, ZHU Z J, ZHANG L S, ZHONG S, LIU B J. Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics[J]. Adv. Powder Technol., 2019, 30(9): 1882-1896  doi: 10.1016/j.apt.2019.06.006

    3. [3]

      ANUCHA C B, ALTIN I, BACAKSIZ E, STATHOPOULOS V N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies[J]. Chem. Eng. J. Adv., 2022, 10: 100262  doi: 10.1016/j.ceja.2022.100262

    4. [4]

      BALAKRISHNAN A, APPUNNI S, CHINTHALA M, VO D V N. Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: A review[J]. Environ. Chem. Lett., 2022, 20(5): 3071-3098  doi: 10.1007/s10311-022-01443-8

    5. [5]

      LIU W, ZHOU J B, HU Z S. Nano-sized g-C3N4 thin layer@CeO2 sphere core-shell photocatalyst combined with H2O2 to degrade doxycycline in water under visible light irradiation[J]. Sep. Purif. Technol., 2019, 227: 115665  doi: 10.1016/j.seppur.2019.06.003

    6. [6]

      LI J, LI Y J, XIONG Z K, YAO J, LAI B. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review[J]. Chin. Chem. Lett., 2019, 30(12): 2139-2146  doi: 10.1016/j.cclet.2019.04.057

    7. [7]

      CUI Y Y, LI M K, ZHU N L, CHENG Y, LAM S S, CHEN J, GAO Y X, ZHAO J T. Bi-based visible light-driven nano-photocatalyst: The design, synthesis, and its application in pollutant governance and energy development[J]. Nano Lett., 2022, 43: 101432

    8. [8]

      CHENG S, ZHAO S D, XING B L, LIU Y Z, ZHANG C X, XIAO H Y. Preparation of magnetic adsorbent-photocatalyst composites for dye removal by synergistic effect of adsorption and photocatalysis[J]. J. Clean. Prod., 2022, 348: 131301  doi: 10.1016/j.jclepro.2022.131301

    9. [9]

      VARJANI S J. Microbial degradation of petroleum hydrocarbons[J]. Bioresour. Technol., 2017, 223: 277-286  doi: 10.1016/j.biortech.2016.10.037

    10. [10]

      XU Q X, HUANG Q S, LUO T Y, WU R L, WEI W, NI B J. Coagulation removal and photocatalytic degradation of microplastics in urban waters[J]. Chem. Eng. J., 2021, 416: 129123  doi: 10.1016/j.cej.2021.129123

    11. [11]

    12. [12]

      LAI C, XU M Y, XU F H, LI B S, MA D S, LIU Y X, ZHANG M M, HUANG D L, TANG L, LIU H Y, YAN H C, ZHOU X R, FU Y K, YI H. An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air[J]. Chem. Eng. J., 2023, 452: 139070  doi: 10.1016/j.cej.2022.139070

    13. [13]

      WEN Q, LI D, LI H M, LONG M Y, GAO C Y, WU L, SONG F, ZHOU J. Synergetic effect of photocatalysis and peroxymonosulfate activated by Co/Mn-MOF-74@g-C3N4 Z-scheme photocatalyst for removal of tetracycline hydrochloride[J]. Sep. Purif. Technol., 2023, 313: 123518  doi: 10.1016/j.seppur.2023.123518

    14. [14]

      ZHU C Y, SHEN M T, QI M J, ZHAO Y Y, XU Z, LI P, RU J, GAO W, ZHANG X M. Constructed CdS/Mn-MOF heterostructure for promoting photocatalytic degradation of rhodamine B[J]. Dyes Pigment., 2023, 219: 111607  doi: 10.1016/j.dyepig.2023.111607

    15. [15]

      SU Q, LI J, WANG B, LI Y C, HOU L A. Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light[J]. Appl. Catal. B‒Environ., 2022, 318: 121820  doi: 10.1016/j.apcatb.2022.121820

    16. [16]

      WANG Y Y, YANG W J, CHEN X J, WANG J, ZHOU Y F. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer[J]. Appl. Catal. B‒Environ., 2018, 220: 337-347  doi: 10.1016/j.apcatb.2017.08.004

    17. [17]

      ZHOU Y, ZHOU L, NI C H, HE N H, YAO L M, LI X. 3D/2D MOF-derivedocix/g-C3N4 Z-scheme heterojunction for visible light photocatalysis: Hydrogen production and degradation of carbamazepine[J]. J. Alloy. Compd., 2022, 890: 161786  doi: 10.1016/j.jallcom.2021.161786

    18. [18]

      SU Q, LI J, YUAN H Y, WANG B, WANG Y H, LI Y C, XING Y. Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution[J]. Chem. Eng. J., 2022, 427: 131594  doi: 10.1016/j.cej.2021.131594

    19. [19]

      XIE S Z, QIN Q J, LIU H L, JIN L J, WEI X L, LIU J X, LIU X, YAO Y C, DONG L H, LI B. MOF-74-M (M=Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for low-temperature NH3-SCR and in situ DRIFTS study reaction mechanism[J]. ACS Appl. Mater. Interfaces, 2020, 12(43): 48476-48485  doi: 10.1021/acsami.0c11035

    20. [20]

      LIU M C, YE P, WANG M, WANG L L, WU C, XU J, CHEN Y P. 2D/2D Bi-MOF-derived BiOCl/MoS2 nanosheets S-scheme heterojunction for effective photocatalytic degradation[J]. J. Environ. Chem. Eng., 2022, 10(5): 108436  doi: 10.1016/j.jece.2022.108436

    21. [21]

      TIAN D Q, ZHOU H Y, ZHANG H, ZHAO P, YOU J J, YAO G, PAN Z C, LIU Y, LAI B. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies[J]. Chem. Eng. J., 2022, 428: 131166  doi: 10.1016/j.cej.2021.131166

    22. [22]

      YANG Y, LIU J J, GU M L, CHENG B, WANG L X, YU J G. Bifunctional TiO2/COF S-scheme photocatalyst with enhanced H2O2 production and furoic acid synthesis mechanism[J]. Appl. Catal. B‒ Environ., 2023, 333: 122780  doi: 10.1016/j.apcatb.2023.122780

    23. [23]

      WANG L X, ZHANG J J, ZHANG Y, YU H G, QU Y H, YU J G. Inorganic metal-oxide photocatalyst for H2O2 production[J]. Small, 2022, 18(8): 2104561  doi: 10.1002/smll.202104561

    24. [24]

      PAN C S, BIAN G M, ZHANG Y N, LUO Y, ZHAN Y, DONG Y M, XU J, ZHOU Y F. Efficient and stable H2O2 production from H2O and O2 on BiPO4 photocatalyst[J]. Appl. Catal. B‒Environ., 2022, 316: 121675  doi: 10.1016/j.apcatb.2022.121675

    25. [25]

      ZHOU C Y, LAI C, XU P, ZENG G M, HUANG D L, LI Z H, ZHANG C, CHEN M, HU L, WAN J, CHEN F, XIONG W F, DONG R. Rational design of carbon-doped carbon nitride/Bi12O17Cl2 composites: A promising candidate photocatalyst for boosting visible-light‑driven photocatalytic degradation of tetracycline[J]. ACS Sustain. Chem. Eng., 2018, 6(5): 6941-6949  doi: 10.1021/acssuschemeng.8b00782

    26. [26]

      QIU Y J, LU J J, YAN Y J, NIU J F, DUAN Y A. Bismuth molybdate photocatalyst for the efficient photocatalytic degradation of tetracycline in water under visible-light irradiation[J]. Surf. Interfaces, 2022, 31: 102009  doi: 10.1016/j.surfin.2022.102009

    27. [27]

      PATEHKHOR H A, FATTAHI M, KHOSRAVI-NKOU M. Synthesis and characterization of ternary chitosan-TiO2-ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater[J]. Sci. Rep., 2021, 11(1): 24177  doi: 10.1038/s41598-021-03492-5

    28. [28]

      SONG J H, ZHAO K, YIN X B, LIU Y, KHAN I, LIU S Y. Photocatalytic degradation of tetracycline hydrochloride with g-C3N4/Ag/AgBr composites[J]. Front. Chem., 2022, 10: 1069816  doi: 10.3389/fchem.2022.1069816

    29. [29]

      LI J J, REN M J, ZHANG L L, ZENG L L, WANG H L, MENG X W. Degradation of tetracycline hydrochloride by UV-assisted MnFe2O4@activated carbon activating persulfate[J]. Chinese J. Inorg. Chem., 2024, 40(10): 1869-1880  doi: 10.11862/CJIC.20240187

    30. [30]

      WANG W D, MA J K, WEI Y Z, MA S S. Efficient photocatalytic degradation of oxytetracycline in seawater by waste biomass-derived carbon-modified porous graphitic carbon nitride heterojunction[J]. Chinese J. Inorg. Chem., 2024, 40(4): 809-822  doi: 10.11862/CJIC.20230353

    31. [31]

      ZHU Y K, JIANG X J, CHEN J Y, FU X H, WU L G, WANG T. Mechanism and degradation pathway of tetracycline degradation by persulfate activation synergistic visible light catalysis[J]. Chinese J. Inorg. Chem., 2023, 39(10): 1857-1868  doi: 10.11862/CJIC.2023.164

    32. [32]

      MAO J Y, HUANG Y W, HUANG Z Q, LIU X P, XUE H, XIAO L R. Performance differences of p-block metal oxides Ga2O3 and Sb2O3 in photocatalytic degradation of tetracycline hydrochloride[J]. Chinese J. Inorg. Chem., 2021, 37(3): 509-515  doi: 10.11862/CJIC.2021.063

    33. [33]

      ZHANG Y Q, ZENG X Y, YU K, LIU G F, CAO H L, LÜ J, CAO R. Hydrothermal synthesis of hierarchically structured bismuth tungstate nanoflowers and their photocatalytic performance for tetracycline degradation[J]. Chinese J. Inorg. Chem., 2019, 35(11): 2185-2191

    34. [34]

      MA Y J, JIANG J, ZHU A Q, TAN P F, BIAN Y, ZENG W X, CUI H, PAN J. Enhanced visible-light photocatalytic degradation by Mn3O4/CeO2 heterojunction: A Z-scheme system photocatalyst[J]. Inorg. Chem., 2018, 5(10): 2579-2586

    35. [35]

      WU G L, LI P, XU D B, LUO B F, HONG Y Z, SHI W D, LIU C B. Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes[J]. Appl. Surf. Sci., 2015, 333: 39-47  doi: 10.1016/j.apsusc.2015.02.008

    36. [36]

      FENG C, QIAO S S, GUO Y, XUE Y H, ZHANG L, MKRAM N, LI S A, WANG J D. Adenine-assisted synthesis of functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced catalytic activity for the cycloaddition of carbon dioxide[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2020, 597: 124781  doi: 10.1016/j.colsurfa.2020.124781

    37. [37]

      SHABBIR B, DRISSI N, JABBOUR K, GASSOUMI A, ALHARBI F F, MANZOOR S, ASHIQ M F, ALBURAIH H A, EHSAN M F, ASHIQ M N. Development of Mn-MOF/CuO composites as platform for efficient electrocatalytic OER[J]. Fuel, 2023, 341: 127638  doi: 10.1016/j.fuel.2023.127638

    38. [38]

      SEPEHRMANSOURIE H, ALAMGHOLILOO H, PESYAN N N, ZOLFIGOL M A. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation[J]. Appl. Catal. B‒Environ., 2023, 321: 122082  doi: 10.1016/j.apcatb.2022.122082

    39. [39]

      FAUZI A A, JALIL A A, HASSAN N S, AZIZ F F A, AZAMI M S, HUSSAIN I, SARAVANAN R. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant[J]. Chemosphere, 2022, 286: 131651  doi: 10.1016/j.chemosphere.2021.131651

    40. [40]

      ZHANG X H, LIN B Y, LI X Y, WANG X, HUANG K Z, CHEN Z H. MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal[J]. Chem. Eng. J., 2022, 430: 132728  doi: 10.1016/j.cej.2021.132728

    41. [41]

      WANG J Z, CAO C S, WANG J W, ZHANG Y Q, ZHU L Y. Insights into highly efficient photodegradation of poly/perfluoroalkyl substances by In-MOF/BiOF heterojunctions: Built-in electric field and strong surface adsorption[J]. Appl. Catal. B‒Environ., 2022, 304: 121013  doi: 10.1016/j.apcatb.2021.121013

    42. [42]

      QIN J X, PEI Y, ZHENG Y, YE D Q, HU Y. Fe-MOF derivative photocatalyst with advanced oxygen reduction capacity for indoor pollutants removal[J]. Appl. Catal. B‒Environ., 2023, 325: 122346  doi: 10.1016/j.apcatb.2022.122346

    43. [43]

      XUE B, LI Q, WANG L Y, DENG M, ZHOU H, LI N Y, TAN M, HAO D, DU H, WANG Q. Ferric-ellagate complex: A promising multifunctional photocatalyst[J]. Chemosphere, 2023, 332: 138829  doi: 10.1016/j.chemosphere.2023.138829

    44. [44]

      XU H, ZHU K R, ALHARBI N S, RABAH S O, CHEN C L. Mechanisms and degradation pathways of doxycycline hydrochloride by Fe3O4 nanoparticles anchored nitrogen-doped porous carbon microspheres activated peroxymonosulfate[J]. Chemosphere, 2023, 333: 138917  doi: 10.1016/j.chemosphere.2023.138917

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    7. [7]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    13. [13]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    14. [14]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    16. [16]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(137)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return