Citation: Rui TIAN, Jiamin CHAI, Junyu CHEN, Yuan REN, Xuehua SUN, Haoyu LI, Yuecheng ZHANG. Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026 shu

Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection

  • Corresponding author: Rui TIAN, tianrui100@163.com
  • Received Date: 21 January 2025
    Revised Date: 9 July 2025

Figures(9)

  • Herein, copper nanoclusters (Cu NCs) were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand, with Cu(NO3)2 as copper source. Subsequently, composite fluorescent nanoparticles, chitosan-functionalized silica nanoparticles (CSNPs)-coated Cu NCs (Cu NCs/CSNPs), were synthesized via a reverse microemulsion method. Compared with Cu NCs, the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance. Based on the composite Cu NCs/CSNPs, a fluorescence method for the detection of cefixime fluorescence quenching was established. The technique was simple, sensitive, and selective for detecting cefixime. The fluorescence quenching efficiency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5 μmol·L-1 (1.81-17.46 mg·L-1), with a limit of detection of 0.045 5 μmol·L-1 (20.6 μg·L-1).
  • 加载中
    1. [1]

      LI Q, MOSQUERA M A, JONES L, PARAKH A, CHAI J S, JIN R C, SCHATZ G C, GU X W. Pressure-induced optical transitions in metal nanoclusters[J]. ACS Nano, 2020, 14(9): 11888-11896  doi: 10.1021/acsnano.0c04813

    2. [2]

      FAN W T, YANG Y, YOU Q, LI J, DENG H T, YAN N, WU Z K. Size- and shape-dependent photoexcitation electron transfer in metal nanoclusters[J]. J. Phys. Chem. C, 2023, 127(1): 816-823  doi: 10.1021/acs.jpcc.2c07678

    3. [3]

      HAN S, ZHANG Z C, LI S P, QI L M, XU G B. Chemiluminescence and electrochemiluminescence applications of metal nanoclusters[J]. Sci. China Chem., 2016, 59(7): 794-801  doi: 10.1007/s11426-016-0043-3

    4. [4]

      TANG X Q, LU M H, WANG J J, MAN S L, PENG W P, MA L. Recent advances of DNA-templated metal nanoclusters for food safety detection: From synthesis, applications, challenges, and beyond[J]. J. Agric. Food. Chem., 2024, 72(11): 5542-5554  doi: 10.1021/acs.jafc.3c09621

    5. [5]

      WANG Y, LIANG S, MEI M L, ZHAO Q W, SHE G W, SHI W S, MU L X. Sensitive and stable thermometer based on the long fluorescence lifetime of Au nanoclusters for mitochondria[J]. Anal. Chem., 2021, 93(45): 15072-15079  doi: 10.1021/acs.analchem.1c03092

    6. [6]

      MASTRACCO P, GONZÀLEZ-ROSELL A, EVANS J, BOGDANOV P, COPP S M. Chemistry-informed machine learning enables discovery of DNA-stabilized silver nanoclusters with near-infrared fluorescence[J]. ACS Nano, 2022, 16(10): 16322-16331  doi: 10.1021/acsnano.2c05390

    7. [7]

      XU D D, ZHENG B, SONG C Y, LIN Y, PANG D W, TANG H W. Metal-enhanced fluorescence of gold nanoclusters as a sensing platform for multi-component detection[J]. Sens. Actuator B‒Chem., 2019, 282: 650-658  doi: 10.1016/j.snb.2018.11.122

    8. [8]

      LIU X, ASTRUC D. Atomically precise copper nanoclusters and their applications[J]. Coord. Chem. Rev., 2018, 359: 112-126  doi: 10.1016/j.ccr.2018.01.001

    9. [9]

      AN Y, REN Y, BICK M, DUDEK A, WAWORUNTU E H W, TANG J, CHEN J, CHANG B S. Highly fluorescent copper nanoclusters for sensing and bioimaging[J]. Biosens. Bioelectron., 2020, 154: 112078  doi: 10.1016/j.bios.2020.112078

    10. [10]

      WANG M K, WANG L, LIU Q, SU X G. A fluorescence sensor for protein kinase activity detection based on gold nanoparticles/copper nanoclusters system[J]. Sens. Actuator B‒Chem., 2018, 256: 691-698  doi: 10.1016/j.snb.2017.09.213

    11. [11]

      XU J M, ZHOU H M, ZHANG Y X, ZHAO Y, YUAN H, HE X X, WU Y, ZHANG S J. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter[J]. J. Hazard. Mater., 2022, 428: 128158  doi: 10.1016/j.jhazmat.2021.128158

    12. [12]

      BUSI K B, DAS S, PALANIVEL M, GHOSH K K, GULYÁS B, PADMANABHAN P, CHAKRABORTTY S. Surface ligand influences the Cu nanoclusters as a dual sensing optical probe for localized pH environment and fluoride ion[J]. Nanomaterials, 2023, 13: 529  doi: 10.3390/nano13030529

    13. [13]

      SALEH S M, EL-SAYED W A, EL-MANAWATY M A, GASSOUMI M, ALI R. An eco-friendly synthetic approach for copper nanoclusters and their potential in lead ions sensing and biological applications[J]. Biosensors, 2022, 12: 197  doi: 10.3390/bios12040197

    14. [14]

      LIU J, WU Z N, TIAN Y, LI Y C, LIN A, LI T T, ZOU H Y, LIU Y, ZHANG X D, ZHANG H, YANG B. Engineering the self-assembly induced emission of Cu nanoclusters by Au􀃬 doping[J]. ACS App. Mater. Interfaces, 2017, 9(29): 24899-24907  doi: 10.1021/acsami.7b06371

    15. [15]

      FAN Y C, YU W H, LIAO Y W, JIANG X H, WANG Z H, CHENG Z J. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2022, 267: 120509  doi: 10.1016/j.saa.2021.120509

    16. [16]

      SHI Y E, MA J Z, FENG A R, WANG Z G, ROGACH A L. Aggregation-induced emission of copper nanoclusters[J]. Aggregate, 2021, 2: e112  doi: 10.1002/agt2.112

    17. [17]

      AO H, FENG H, PAN S F, BAO Z Y, LI Z H, CHEN J R, QIAN Z S. Synthesis and functionalization of stable and bright copper nanoclusters by in situ generation of silica shells for bioimaging and biosensing[J]. ACS Appl. Nano Mater., 2018, 1(10): 5673-5681  doi: 10.1021/acsanm.8b01286

    18. [18]

      FU L Y, LIU H M, YAN L, FU Y Y, ZHU Y, JIN L, LIANG R Z. Fabrication of CuNCs/LDHs films with excellent luminescent properties and exploration of thermosensitivity[J]. Ind. Eng. Chem. Res., 2019, 58(19): 8009-8015  doi: 10.1021/acs.iecr.8b06236

    19. [19]

      CHEN S H, LI Z, LI W J, HUANG Z Z, JIA Q. Confining copper nanoclusters on exfoliation-free 2D boehmite nanosheets: Fabrication of ultra-sensitive sensing platform for α-glucosidase activity monitoring and natural anti-diabetes drug screening[J]. Biosens. Bioelectron., 2021, 182: 113198  doi: 10.1016/j.bios.2021.113198

    20. [20]

      MU J, XU W H, HUANG Z Z, JIA Q. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication[J]. Microchem. J., 2023, 189: 108533  doi: 10.1016/j.microc.2023.108533

    21. [21]

      YOO J, HAN S, PARK W, LEE T, PARK Y, CHANG H, HAHN S K, KWON W. Defect-induced fluorescence of silica nanoparticles for bioimaging applications[J]. ACS Appl. Mater. Interfaces, 2018, 10: 44247-44256  doi: 10.1021/acsami.8b16163

    22. [22]

      FEDORENKO S, GILMSNOVA D, MUKHAETSHINA A, NIZAMEEV I, KHOLIN K, AKHMADEEV B, VOLOSHINA A, SAPUNOVA A, KUZNETSOVA S, DAMINOVA A, KATSYUBA S, ZAIROV R, MUSTAFINA A. Silica nanoparticles with dual visible-NIR luminescence affected by silica confinement of Tb(Ⅲ) and Yb(Ⅲ) complexes for cellular imaging application[J]. J. Mater. Sci., 2019, 54: 9140-9154  doi: 10.1007/s10853-019-03532-6

    23. [23]

      YANG Q S, LI L, ZHAO F, HAN H Y, WSNG W H, TIAN Y C, WSNG Y W, YE Z S, GUO X H. Hollow silica-polyelectrolyte composite nanoparticles for controlled drug delivery[J]. J. Mater. Sci., 2019, 54: 2552-2565  doi: 10.1007/s10853-018-2996-7

    24. [24]

      ZYGOURI E, STATHIS A, COURIS S, TANGOULIS V. Nanocomposites based on spin-crossover nanoparticles and silica-coated gold nanorods: A nonlinear optical study[J]. Molecules, 2023, 28: 4200  doi: 10.3390/molecules28104200

    25. [25]

      LIU C, BAO L, TANG B, ZHAO J Y, ZHANG Z L, XIONG L H, HU J, WU L L, PANG D W. Fluorescence-converging carbon nanodots-hybridized silica nanosphere[J]. Small, 2016, 12(34): 4702-4706  doi: 10.1002/smll.201503958

    26. [26]

      SON T, KIM M, CHOI M, NAM S H, YOO A, LEE H, HAN E H, HONG K S, PARK H S. Advancing fluorescence imaging: Enhanced control of cyanine dye-doped silica nanoparticles[J]. J. Nanobiotechnol., 2024, 22: 347  doi: 10.1186/s12951-024-02638-7

    27. [27]

      STOIAN M C, MIHALACHE I, MATACHE M, RDAOI A. Terbium-functionalized silica nanoparticles for metal ion sensing by fluorescence quenching[J]. Dyes Pigment., 2021, 187: 109144  doi: 10.1016/j.dyepig.2021.109144

    28. [28]

      YE J Z, CHEN Z K, CHEN W W, ZHAO Y, DING C P, HUANG Y J. Gold nanoparticles coated with silica shells as high-performance fluorescence nanoprobe[J]. ACS Appl. Nano Mater., 2024, 7(5): 5543-5553  doi: 10.1021/acsanm.4c00243

    29. [29]

      AL-HAKKANI M F, GOUDA G A, HASSAN S H A, MOHAMED M M A, NAGIUB A M. Cefixime wastewater management via bioengineered Hematite nanoparticles and the in-vitro synergetic potential multifunction activities of cefixime@hematite nanosystem[J]. Surf. Interfaces, 2022, 30: 101877  doi: 10.1016/j.surfin.2022.101877

    30. [30]

      QIN G X, WANG J, LI L, YUAN F F, ZHA Q Q, BAI W B, NI Y H. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of cefixime[J]. Talanta, 2021, 221: 121421  doi: 10.1016/j.talanta.2020.121421

    31. [31]

      RAHMAN Z U, SHAH U, ALAM A, SHAH Z, SHAHEEN K, KHAN S B, KHAN S A. Photocatalytic degradation of cefixime using CuO-NiO nanocomposite photocatalyst[J]. Inorg. Chem. Commun., 2023, 148: 110312  doi: 10.1016/j.inoche.2022.110312

    32. [32]

      ESKANDARI H, AMIRZEHNI M, SAFAVI E, HASSANZADEH J. Synthesis of Zn metal-organic framework doped magnetic graphene oxide for preconcentration and extraction of cefixime followed by its measurement using HPLC[J]. Microchem. J., 2021, 169: 106537  doi: 10.1016/j.microc.2021.106537

    33. [33]

      SAGAR P, SRIVASTAVA M, PRAKASH R, SRIVASTAVA S K. The fabrication of an MoS2 QD-AuNP modified screen-printed electrode for the improved electrochemical detection of cefixime[J]. Anal. Methods, 2020, 12: 3014-3024  doi: 10.1039/D0AY00899K

    34. [34]

      MAHROUSE M A, ELWY H M, SALEM E M. Simultaneous determination of cefixime and erdosteine in combined dosage form using validated spectrophotometric methods[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2020, 241: 118647  doi: 10.1016/j.saa.2020.118647

    35. [35]

      BAJWA J, NAWAZ H, MAJEED M I, HUSSAIN A I, FAROOQ S, RASHID N, BAKKAR M A, AHMAD S, HYAT H, BASHIR S, ALI S, KASHIF M. Quantitative analysis of solid dosage forms of cefixime using Raman spectroscopy[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2020, 238: 118446  doi: 10.1016/j.saa.2020.118446

    36. [36]

      MASOUDYFAR Z, ELHAMI S. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of cefixime[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2019, 211: 234-238  doi: 10.1016/j.saa.2018.12.007

    37. [37]

      IRANI-NEAHAD M H, JALILI R, KOHAN E, KHATAEE A, YOON Y. Tungsten disulfide (WS2)/fluorescein ratiometric fluorescent probe for detection of cefixime residues in milk[J]. Environ. Res., 2022, 205: 112512  doi: 10.1016/j.envres.2021.112512

    38. [38]

      HUANG X M, LAN M J, WANG J, GUO L H, LIN Z Y, ZHANG F, ZHANG T, WU C M, QIU B. A dual-mode strategy for sensing and bio-imaging of endogenous alkaline phosphatase based on the combination of photoinduced electron transfer and hyperchromic effect[J]. Anal. Chim. Acta, 2021, 1142: 65-72  doi: 10.1016/j.aca.2020.09.059

    39. [39]

      TIAN R, QU Y J, ZHENG X W. Amplified fluorescence quenching of lucigenin self-assembled inside silica/chitosan nanoparticles by Cl-[J]. Anal. Chem., 2014, 86: 9114-9121  doi: 10.1021/ac5018502

    40. [40]

      LIU M Y, DU X J, XU K, YAN B W, FAN Z B, GAO Z D, REN X Q. A cationic quantum dot-based ratiometric fluorescent probe to visually detect berberine hydrochloride in human blood serums[J]. J. Anal. Sci. Technol., 2021, 12: 11  doi: 10.1186/s40543-021-00261-x

    41. [41]

      SON T, KIM M, CHOI M, NAM S H, YOO A, LEE H, HAN E H, HONG K S, PARK H S. Advancing fuorescence imaging: Enhanced control of cyanine dye-doped silica nanoparticles[J]. J. Nanobiotechnol., 2024, 22: 347  doi: 10.1186/s12951-024-02638-7

    42. [42]

      KANG B, SCHRADE A, XU Y, CHAN Y, ZIENER U. Synthesis and characterization of dually labeled Pickering-type stabilized polymer nanoparticles in a downscaled miniemulsion system[J]. Langmuir, 2012, 28(25): 9347-9354  doi: 10.1021/la301326p

    43. [43]

      CAI Z F, LI H Y, WANG X S, MIN C, WEN J Q, FU R X, DAI Z Y, CHEN J, GUO M Z, YANG H J, BAI P P, LU X M, WU T, WU Y. Highly luminescent copper nanoclusters as temperature sensors and "turn off" detection of oxytetracycline[J]. Colloid Surf. A‒ Physicochem. Eng. Asp., 2022, 647: 129202  doi: 10.1016/j.colsurfa.2022.129202

    44. [44]

      HAN W J, PIAO S H, CHOI H J, SEO Y. Core-shell structured mesoporous magnetic nanoparticles and their magnetorheological response[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2017, 524: 79-86  doi: 10.1016/j.colsurfa.2017.04.016

    45. [45]

      GHIORGHITA C A, DINU M V, DRAGAN E S. Burst-free and sustained release of diclofenac sodium from mesoporous silica/PEI microspheres coated with carboxymethyl cellulose/chitosan layer-by-layer films[J]. Cellulose, 2022, 29: 395-412  doi: 10.1007/s10570-021-04282-y

    46. [46]

      YAO Z X, LIU H M, LIU Y S, DIAO Y X, HU G X, ZHANG Q F, LI Z. FRET-based fluorometry assay for curcumin detecting using PVP-templated Cu NCs[J]. Talanta, 2021, 223: 121741  doi: 10.1016/j.talanta.2020.121741

    47. [47]

      NIU W Z, MOEH T, ADAMS P, ZHANG X, LEFÈVEREF R, CRUZ A M, ZENG P, KUNZE K, YANG W, TILLEY S D. Crystal orientation-dependent etching and trapping in thermally-oxidised Cu2O photocathodes for water splitting[J]. Energy Environ. Sci., 2022, 15: 2002-2010  doi: 10.1039/D1EE03696C

    48. [48]

      ZHU X, LIU L L, CAO W W, YUAN R, WANG H J. Ultra-sensitive microRNA biosensor based on strong aggregation-induced electrochemiluminescence from bidentate ligand-stabilized copper nanoclusters in polymer hydrogel[J]. Anal. Chem., 2023, 95: 5553-5560  doi: 10.1021/acs.analchem.2c04565

    49. [49]

      YANG B, YANG F Z, HUANG L, XU S K, YAO G H, ZHOU S M. Study on the role of 2, 2'-bipyridine in chemical copper plating[J]. Electrochemistry, 2007, 13(4): 425-430  doi: 10.3969/j.issn.1006-3471.2007.04.015

    50. [50]

      LIU Z C, JING X, ZHANG S J, TIAN Y. A copper nanocluster-based fluorescent probe for real-time imaging and ratiometric biosensing of calcium ions in neurons[J]. Anal. Chem., 2019, 91: 2488-2497  doi: 10.1021/acs.analchem.8b05360

    51. [51]

      ZHAO S A, DENG Y, YAN T Y, YANG X L, XU W D, LIU D H, WANG W J. Explore the interaction between ellagic acid and zein using multi-spectroscopy analysis and molecular docking[J]. Foods, 2022, 11: 2764  doi: 10.3390/foods11182764

    52. [52]

      REN H X, MAO M X, LI M, ZHANG C Z, PENG C F, XU J G, WEI X L. A fluorescent detection for paraquat based on β-CDs-enhanced fluorescent gold nanoclusters[J]. Foods, 2021, 10: 1178  doi: 10.3390/foods10061178

    53. [53]

      DU J Y, YANG Y, SHAO T L, QI S Q, ZHANG P, ZHOU S J, ZHU C Q. Yellow emission carbon dots for highly selective and sensitive OFF-ON sensing of ferric and pyrophosphate ions in living cells[J]. J. Colloid Interf. Sci., 2021, 587: 376-384  doi: 10.1016/j.jcis.2020.11.108

    54. [54]

      MA D M, ZHANG L B, YIN Y W, GAO Y X, WANG Q. Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450[J]. J. Pharm. Anal., 2021, 11: 757-763  doi: 10.1016/j.jpha.2020.12.004

    55. [55]

      KAVEH S, NOROUZI B, NAMI N, MIRABI A. Phytochemical synthesis of CdO nanoparticles: Fabrication of electrochemical sensor for quantification of cefixime[J]. J. Mater. Sci. ‒Mater. Electron., 2021, 32: 8932-8943  doi: 10.1007/s10854-021-05564-8

    56. [56]

      DARABI R, NOOSHABADI M S. Development of an amplified nanostructured electrochemical sensor for the detection of cefixime in pharmaceuticals and biological samples[J]. J. Pharm. Biomed. Anal., 2022, 212: 114657  doi: 10.1016/j.jpba.2022.114657

    57. [57]

      AKHGARI F, SAMADI N, FARHADI K. Fluorescent carbon dot as nanosensor for sensitive and selective detection of cefixime based on inner filter effect[J]. J. Fluoresc., 2017, 27: 921-927  doi: 10.1007/s10895-017-2027-0

    58. [58]

      WANG K M, DONG Y Q, BAI X L, ZHAO X, ZHAO R T, ZHOU J, YU H M, LI L F, TANG H J, MA Y L. A water-stable Zn(Ⅱ) coordination polymer as a fluorescence sensor for multifunctional detection of cefixime in milk, honey, beef and chicken[J]. J. Mol. Struct., 2023, 1285: 135495  doi: 10.1016/j.molstruc.2023.135495

  • 加载中
    1. [1]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    2. [2]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    3. [3]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    6. [6]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    7. [7]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    11. [11]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    12. [12]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    13. [13]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    14. [14]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    15. [15]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    16. [16]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    17. [17]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    18. [18]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    19. [19]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    20. [20]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

Metrics
  • PDF Downloads(0)
  • Abstract views(167)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return