Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection
- Corresponding author: Rui TIAN, tianrui100@163.com
Citation:
Rui TIAN, Jiamin CHAI, Junyu CHEN, Yuan REN, Xuehua SUN, Haoyu LI, Yuecheng ZHANG. Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1903-1915.
doi:
10.11862/CJIC.20250026
LI Q, MOSQUERA M A, JONES L, PARAKH A, CHAI J S, JIN R C, SCHATZ G C, GU X W. Pressure-induced optical transitions in metal nanoclusters[J]. ACS Nano, 2020, 14(9): 11888-11896
doi: 10.1021/acsnano.0c04813
FAN W T, YANG Y, YOU Q, LI J, DENG H T, YAN N, WU Z K. Size- and shape-dependent photoexcitation electron transfer in metal nanoclusters[J]. J. Phys. Chem. C, 2023, 127(1): 816-823
doi: 10.1021/acs.jpcc.2c07678
HAN S, ZHANG Z C, LI S P, QI L M, XU G B. Chemiluminescence and electrochemiluminescence applications of metal nanoclusters[J]. Sci. China Chem., 2016, 59(7): 794-801
doi: 10.1007/s11426-016-0043-3
TANG X Q, LU M H, WANG J J, MAN S L, PENG W P, MA L. Recent advances of DNA-templated metal nanoclusters for food safety detection: From synthesis, applications, challenges, and beyond[J]. J. Agric. Food. Chem., 2024, 72(11): 5542-5554
doi: 10.1021/acs.jafc.3c09621
WANG Y, LIANG S, MEI M L, ZHAO Q W, SHE G W, SHI W S, MU L X. Sensitive and stable thermometer based on the long fluorescence lifetime of Au nanoclusters for mitochondria[J]. Anal. Chem., 2021, 93(45): 15072-15079
doi: 10.1021/acs.analchem.1c03092
MASTRACCO P, GONZÀLEZ-ROSELL A, EVANS J, BOGDANOV P, COPP S M. Chemistry-informed machine learning enables discovery of DNA-stabilized silver nanoclusters with near-infrared fluorescence[J]. ACS Nano, 2022, 16(10): 16322-16331
doi: 10.1021/acsnano.2c05390
XU D D, ZHENG B, SONG C Y, LIN Y, PANG D W, TANG H W. Metal-enhanced fluorescence of gold nanoclusters as a sensing platform for multi-component detection[J]. Sens. Actuator B‒Chem., 2019, 282: 650-658
doi: 10.1016/j.snb.2018.11.122
LIU X, ASTRUC D. Atomically precise copper nanoclusters and their applications[J]. Coord. Chem. Rev., 2018, 359: 112-126
doi: 10.1016/j.ccr.2018.01.001
AN Y, REN Y, BICK M, DUDEK A, WAWORUNTU E H W, TANG J, CHEN J, CHANG B S. Highly fluorescent copper nanoclusters for sensing and bioimaging[J]. Biosens. Bioelectron., 2020, 154: 112078
doi: 10.1016/j.bios.2020.112078
WANG M K, WANG L, LIU Q, SU X G. A fluorescence sensor for protein kinase activity detection based on gold nanoparticles/copper nanoclusters system[J]. Sens. Actuator B‒Chem., 2018, 256: 691-698
doi: 10.1016/j.snb.2017.09.213
XU J M, ZHOU H M, ZHANG Y X, ZHAO Y, YUAN H, HE X X, WU Y, ZHANG S J. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter[J]. J. Hazard. Mater., 2022, 428: 128158
doi: 10.1016/j.jhazmat.2021.128158
BUSI K B, DAS S, PALANIVEL M, GHOSH K K, GULYÁS B, PADMANABHAN P, CHAKRABORTTY S. Surface ligand influences the Cu nanoclusters as a dual sensing optical probe for localized pH environment and fluoride ion[J]. Nanomaterials, 2023, 13: 529
doi: 10.3390/nano13030529
SALEH S M, EL-SAYED W A, EL-MANAWATY M A, GASSOUMI M, ALI R. An eco-friendly synthetic approach for copper nanoclusters and their potential in lead ions sensing and biological applications[J]. Biosensors, 2022, 12: 197
doi: 10.3390/bios12040197
LIU J, WU Z N, TIAN Y, LI Y C, LIN A, LI T T, ZOU H Y, LIU Y, ZHANG X D, ZHANG H, YANG B. Engineering the self-assembly induced emission of Cu nanoclusters by Au doping[J]. ACS App. Mater. Interfaces, 2017, 9(29): 24899-24907
doi: 10.1021/acsami.7b06371
FAN Y C, YU W H, LIAO Y W, JIANG X H, WANG Z H, CHENG Z J. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2022, 267: 120509
doi: 10.1016/j.saa.2021.120509
SHI Y E, MA J Z, FENG A R, WANG Z G, ROGACH A L. Aggregation-induced emission of copper nanoclusters[J]. Aggregate, 2021, 2: e112
doi: 10.1002/agt2.112
AO H, FENG H, PAN S F, BAO Z Y, LI Z H, CHEN J R, QIAN Z S. Synthesis and functionalization of stable and bright copper nanoclusters by in situ generation of silica shells for bioimaging and biosensing[J]. ACS Appl. Nano Mater., 2018, 1(10): 5673-5681
doi: 10.1021/acsanm.8b01286
FU L Y, LIU H M, YAN L, FU Y Y, ZHU Y, JIN L, LIANG R Z. Fabrication of CuNCs/LDHs films with excellent luminescent properties and exploration of thermosensitivity[J]. Ind. Eng. Chem. Res., 2019, 58(19): 8009-8015
doi: 10.1021/acs.iecr.8b06236
CHEN S H, LI Z, LI W J, HUANG Z Z, JIA Q. Confining copper nanoclusters on exfoliation-free 2D boehmite nanosheets: Fabrication of ultra-sensitive sensing platform for α-glucosidase activity monitoring and natural anti-diabetes drug screening[J]. Biosens. Bioelectron., 2021, 182: 113198
doi: 10.1016/j.bios.2021.113198
MU J, XU W H, HUANG Z Z, JIA Q. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication[J]. Microchem. J., 2023, 189: 108533
doi: 10.1016/j.microc.2023.108533
YOO J, HAN S, PARK W, LEE T, PARK Y, CHANG H, HAHN S K, KWON W. Defect-induced fluorescence of silica nanoparticles for bioimaging applications[J]. ACS Appl. Mater. Interfaces, 2018, 10: 44247-44256
doi: 10.1021/acsami.8b16163
FEDORENKO S, GILMSNOVA D, MUKHAETSHINA A, NIZAMEEV I, KHOLIN K, AKHMADEEV B, VOLOSHINA A, SAPUNOVA A, KUZNETSOVA S, DAMINOVA A, KATSYUBA S, ZAIROV R, MUSTAFINA A. Silica nanoparticles with dual visible-NIR luminescence affected by silica confinement of Tb(Ⅲ) and Yb(Ⅲ) complexes for cellular imaging application[J]. J. Mater. Sci., 2019, 54: 9140-9154
doi: 10.1007/s10853-019-03532-6
YANG Q S, LI L, ZHAO F, HAN H Y, WSNG W H, TIAN Y C, WSNG Y W, YE Z S, GUO X H. Hollow silica-polyelectrolyte composite nanoparticles for controlled drug delivery[J]. J. Mater. Sci., 2019, 54: 2552-2565
doi: 10.1007/s10853-018-2996-7
ZYGOURI E, STATHIS A, COURIS S, TANGOULIS V. Nanocomposites based on spin-crossover nanoparticles and silica-coated gold nanorods: A nonlinear optical study[J]. Molecules, 2023, 28: 4200
doi: 10.3390/molecules28104200
LIU C, BAO L, TANG B, ZHAO J Y, ZHANG Z L, XIONG L H, HU J, WU L L, PANG D W. Fluorescence-converging carbon nanodots-hybridized silica nanosphere[J]. Small, 2016, 12(34): 4702-4706
doi: 10.1002/smll.201503958
SON T, KIM M, CHOI M, NAM S H, YOO A, LEE H, HAN E H, HONG K S, PARK H S. Advancing fluorescence imaging: Enhanced control of cyanine dye-doped silica nanoparticles[J]. J. Nanobiotechnol., 2024, 22: 347
doi: 10.1186/s12951-024-02638-7
STOIAN M C, MIHALACHE I, MATACHE M, RDAOI A. Terbium-functionalized silica nanoparticles for metal ion sensing by fluorescence quenching[J]. Dyes Pigment., 2021, 187: 109144
doi: 10.1016/j.dyepig.2021.109144
YE J Z, CHEN Z K, CHEN W W, ZHAO Y, DING C P, HUANG Y J. Gold nanoparticles coated with silica shells as high-performance fluorescence nanoprobe[J]. ACS Appl. Nano Mater., 2024, 7(5): 5543-5553
doi: 10.1021/acsanm.4c00243
AL-HAKKANI M F, GOUDA G A, HASSAN S H A, MOHAMED M M A, NAGIUB A M. Cefixime wastewater management via bioengineered Hematite nanoparticles and the in-vitro synergetic potential multifunction activities of cefixime@hematite nanosystem[J]. Surf. Interfaces, 2022, 30: 101877
doi: 10.1016/j.surfin.2022.101877
QIN G X, WANG J, LI L, YUAN F F, ZHA Q Q, BAI W B, NI Y H. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of cefixime[J]. Talanta, 2021, 221: 121421
doi: 10.1016/j.talanta.2020.121421
RAHMAN Z U, SHAH U, ALAM A, SHAH Z, SHAHEEN K, KHAN S B, KHAN S A. Photocatalytic degradation of cefixime using CuO-NiO nanocomposite photocatalyst[J]. Inorg. Chem. Commun., 2023, 148: 110312
doi: 10.1016/j.inoche.2022.110312
ESKANDARI H, AMIRZEHNI M, SAFAVI E, HASSANZADEH J. Synthesis of Zn metal-organic framework doped magnetic graphene oxide for preconcentration and extraction of cefixime followed by its measurement using HPLC[J]. Microchem. J., 2021, 169: 106537
doi: 10.1016/j.microc.2021.106537
SAGAR P, SRIVASTAVA M, PRAKASH R, SRIVASTAVA S K. The fabrication of an MoS2 QD-AuNP modified screen-printed electrode for the improved electrochemical detection of cefixime[J]. Anal. Methods, 2020, 12: 3014-3024
doi: 10.1039/D0AY00899K
MAHROUSE M A, ELWY H M, SALEM E M. Simultaneous determination of cefixime and erdosteine in combined dosage form using validated spectrophotometric methods[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2020, 241: 118647
doi: 10.1016/j.saa.2020.118647
BAJWA J, NAWAZ H, MAJEED M I, HUSSAIN A I, FAROOQ S, RASHID N, BAKKAR M A, AHMAD S, HYAT H, BASHIR S, ALI S, KASHIF M. Quantitative analysis of solid dosage forms of cefixime using Raman spectroscopy[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2020, 238: 118446
doi: 10.1016/j.saa.2020.118446
MASOUDYFAR Z, ELHAMI S. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of cefixime[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2019, 211: 234-238
doi: 10.1016/j.saa.2018.12.007
IRANI-NEAHAD M H, JALILI R, KOHAN E, KHATAEE A, YOON Y. Tungsten disulfide (WS2)/fluorescein ratiometric fluorescent probe for detection of cefixime residues in milk[J]. Environ. Res., 2022, 205: 112512
doi: 10.1016/j.envres.2021.112512
HUANG X M, LAN M J, WANG J, GUO L H, LIN Z Y, ZHANG F, ZHANG T, WU C M, QIU B. A dual-mode strategy for sensing and bio-imaging of endogenous alkaline phosphatase based on the combination of photoinduced electron transfer and hyperchromic effect[J]. Anal. Chim. Acta, 2021, 1142: 65-72
doi: 10.1016/j.aca.2020.09.059
TIAN R, QU Y J, ZHENG X W. Amplified fluorescence quenching of lucigenin self-assembled inside silica/chitosan nanoparticles by Cl-[J]. Anal. Chem., 2014, 86: 9114-9121
doi: 10.1021/ac5018502
LIU M Y, DU X J, XU K, YAN B W, FAN Z B, GAO Z D, REN X Q. A cationic quantum dot-based ratiometric fluorescent probe to visually detect berberine hydrochloride in human blood serums[J]. J. Anal. Sci. Technol., 2021, 12: 11
doi: 10.1186/s40543-021-00261-x
SON T, KIM M, CHOI M, NAM S H, YOO A, LEE H, HAN E H, HONG K S, PARK H S. Advancing fuorescence imaging: Enhanced control of cyanine dye-doped silica nanoparticles[J]. J. Nanobiotechnol., 2024, 22: 347
doi: 10.1186/s12951-024-02638-7
KANG B, SCHRADE A, XU Y, CHAN Y, ZIENER U. Synthesis and characterization of dually labeled Pickering-type stabilized polymer nanoparticles in a downscaled miniemulsion system[J]. Langmuir, 2012, 28(25): 9347-9354
doi: 10.1021/la301326p
CAI Z F, LI H Y, WANG X S, MIN C, WEN J Q, FU R X, DAI Z Y, CHEN J, GUO M Z, YANG H J, BAI P P, LU X M, WU T, WU Y. Highly luminescent copper nanoclusters as temperature sensors and "turn off" detection of oxytetracycline[J]. Colloid Surf. A‒ Physicochem. Eng. Asp., 2022, 647: 129202
doi: 10.1016/j.colsurfa.2022.129202
HAN W J, PIAO S H, CHOI H J, SEO Y. Core-shell structured mesoporous magnetic nanoparticles and their magnetorheological response[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2017, 524: 79-86
doi: 10.1016/j.colsurfa.2017.04.016
GHIORGHITA C A, DINU M V, DRAGAN E S. Burst-free and sustained release of diclofenac sodium from mesoporous silica/PEI microspheres coated with carboxymethyl cellulose/chitosan layer-by-layer films[J]. Cellulose, 2022, 29: 395-412
doi: 10.1007/s10570-021-04282-y
YAO Z X, LIU H M, LIU Y S, DIAO Y X, HU G X, ZHANG Q F, LI Z. FRET-based fluorometry assay for curcumin detecting using PVP-templated Cu NCs[J]. Talanta, 2021, 223: 121741
doi: 10.1016/j.talanta.2020.121741
NIU W Z, MOEH T, ADAMS P, ZHANG X, LEFÈVEREF R, CRUZ A M, ZENG P, KUNZE K, YANG W, TILLEY S D. Crystal orientation-dependent etching and trapping in thermally-oxidised Cu2O photocathodes for water splitting[J]. Energy Environ. Sci., 2022, 15: 2002-2010
doi: 10.1039/D1EE03696C
ZHU X, LIU L L, CAO W W, YUAN R, WANG H J. Ultra-sensitive microRNA biosensor based on strong aggregation-induced electrochemiluminescence from bidentate ligand-stabilized copper nanoclusters in polymer hydrogel[J]. Anal. Chem., 2023, 95: 5553-5560
doi: 10.1021/acs.analchem.2c04565
YANG B, YANG F Z, HUANG L, XU S K, YAO G H, ZHOU S M. Study on the role of 2, 2'-bipyridine in chemical copper plating[J]. Electrochemistry, 2007, 13(4): 425-430
doi: 10.3969/j.issn.1006-3471.2007.04.015
LIU Z C, JING X, ZHANG S J, TIAN Y. A copper nanocluster-based fluorescent probe for real-time imaging and ratiometric biosensing of calcium ions in neurons[J]. Anal. Chem., 2019, 91: 2488-2497
doi: 10.1021/acs.analchem.8b05360
ZHAO S A, DENG Y, YAN T Y, YANG X L, XU W D, LIU D H, WANG W J. Explore the interaction between ellagic acid and zein using multi-spectroscopy analysis and molecular docking[J]. Foods, 2022, 11: 2764
doi: 10.3390/foods11182764
REN H X, MAO M X, LI M, ZHANG C Z, PENG C F, XU J G, WEI X L. A fluorescent detection for paraquat based on β-CDs-enhanced fluorescent gold nanoclusters[J]. Foods, 2021, 10: 1178
doi: 10.3390/foods10061178
DU J Y, YANG Y, SHAO T L, QI S Q, ZHANG P, ZHOU S J, ZHU C Q. Yellow emission carbon dots for highly selective and sensitive OFF-ON sensing of ferric and pyrophosphate ions in living cells[J]. J. Colloid Interf. Sci., 2021, 587: 376-384
doi: 10.1016/j.jcis.2020.11.108
MA D M, ZHANG L B, YIN Y W, GAO Y X, WANG Q. Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450[J]. J. Pharm. Anal., 2021, 11: 757-763
doi: 10.1016/j.jpha.2020.12.004
KAVEH S, NOROUZI B, NAMI N, MIRABI A. Phytochemical synthesis of CdO nanoparticles: Fabrication of electrochemical sensor for quantification of cefixime[J]. J. Mater. Sci. ‒Mater. Electron., 2021, 32: 8932-8943
doi: 10.1007/s10854-021-05564-8
DARABI R, NOOSHABADI M S. Development of an amplified nanostructured electrochemical sensor for the detection of cefixime in pharmaceuticals and biological samples[J]. J. Pharm. Biomed. Anal., 2022, 212: 114657
doi: 10.1016/j.jpba.2022.114657
AKHGARI F, SAMADI N, FARHADI K. Fluorescent carbon dot as nanosensor for sensitive and selective detection of cefixime based on inner filter effect[J]. J. Fluoresc., 2017, 27: 921-927
doi: 10.1007/s10895-017-2027-0
WANG K M, DONG Y Q, BAI X L, ZHAO X, ZHAO R T, ZHOU J, YU H M, LI L F, TANG H J, MA Y L. A water-stable Zn(Ⅱ) coordination polymer as a fluorescence sensor for multifunctional detection of cefixime in milk, honey, beef and chicken[J]. J. Mol. Struct., 2023, 1285: 135495
doi: 10.1016/j.molstruc.2023.135495
Rui TIAN , Duo LI , Yuan REN , Jiamin CHAI , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Ren Shen , Yanmei Fang , Chunxiao Yang , Quande Wei , Pui-In Mak , Rui P. Martins , Yanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143
Tiancong Shi , Xi Chen , Xiao Zhou , Hongyi Zhang , Fuping Han , Lihan Cai , Wen Sun , Jianjun Du , Jiangli Fan , Xiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Wenya Jiang , Jianyu Wei , Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371
Rakesh Kumar Gupta , Zhi Wang , Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
In a: Cu NCs (dashed line) and Cu NCs/CSNPs (solid line); Inset: optical photographs under visible light (left) and ultraviolet light (right).
FL: fluorescence.
Other conditions were kept consistent as follows, except for the variables. Buffer solution: KH2PO4-Na2HPO4, pH=6.09, volume of buffer: 1.25 mL, volume of Cu NCs/CSNPs: 1.25 mL, temperature: 35 ℃, reaction time: 5 min, and Cfx: 20.0 μmol·L-1; BR=Britton-Robinson buffer solution.
From a to j, the concentrations were 0, 4.0, 11.9, 15.7, 19.6, 23.4, 27.2, 31.0, 34.7, 38.5 μmol·L-1, respectively.