-
[1]
YAO Q, LU Z H, YANG Y, CHEN X, JIANG H L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res., 2018, 11: 4412-4422
doi: 10.1007/s12274-018-2031-y
-
[2]
LI Z, HE T, LIU L, CHEN W D, ZHANG M, WU G T, CHEN P. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design[J]. Chem. Sci., 2017, 8(1): 781- 788
doi: 10.1039/C6SC02456D
-
[3]
YANG X C, BULUSHEV D A, YANG J, ZHANG Q. New liquid chemical hydrogen storage technology[J]. Energies, 2022, 15(17): 6360
doi: 10.3390/en15176360
-
[4]
ZHANG Z P, TANG S Y, XU L L, WANG J, LI A S, JING M X, YANG X C, SONG F Z. Encapsulation of ruthenium oxide nanoparticles in nitrogen-doped porous carbon polyhedral for pH-universal hydrogen evolution electrocatalysis[J]. Int. J. Hydrog. Energy, 2024, 74: 10-16
doi: 10.1016/j.ijhydene.2024.06.061
-
[5]
NAVLANI-GARCIA M, MORI K, KUWAHARA Y, YAMASHITA H. Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts[J]. NPG Asia Mater., 2018, 10: 277-292
doi: 10.1038/s41427-018-0025-6
-
[6]
YANG X C, CHEN L Y, LIU H Y, KURIHARA T, HORIKE S, XU Q. Encapsulating ultrastable metal nanoparticles within reticular Schiff base nanospaces for enhanced catalytic performance[J]. Cell Rep. Phys. Sci., 2021, 2(1): 100289
doi: 10.1016/j.xcrp.2020.100289
-
[7]
YANG X, SUN J K, KITTA M, PANG H, XU Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages[J]. Nat. Catal., 2018, 1(3): 214-220
doi: 10.1038/s41929-018-0030-8
-
[8]
SUN Q M, WANG N, BING Q M, SI R, LIU J Y, BAI R S, ZHANG P, JIA M J, YU J H. Subnanometric hybrid Pd-M(OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation[J]. Chem, 2017, 3(3): 477-493
doi: 10.1016/j.chempr.2017.07.001
-
[9]
HE L, WENIGER F, NEUMANN H, BELLER M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry[J]. Angew. Chem.-Int. Edit., 2016, 55(41): 12582-12594
doi: 10.1002/anie.201603198
-
[10]
XIAO X Y, SHANG Y M, BAI Y, MIAO H, LU X W, LEE K Y J, AHN J P, YOUNIS O, YU T K Y, YANG X C. Pt-decorated bimetallic PdRu nanocubes with tailorable surface electronic structures for highly efficient acidic hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2024, 71: 1026-1033
doi: 10.1016/j.ijhydene.2024.05.066
-
[11]
KUMAR A, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: A highly efficient catalyst for dehydrogenation of hydrous hydrazine[J]. J. Mater. Chem. A, 2019, 7(1): 112-115
doi: 10.1039/C8TA09003C
-
[12]
CHEN Y, FAN Z X, LUO Z M, LIU X Z, LAI Z C, LI B, ZONG Y, GU L, ZHANG H. Highly-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation[J]. Adv. Mater., 2017, 29(36): 1701331
doi: 10.1002/adma.201701331
-
[13]
LIU D, YAO H Q, WANG H, ZHANG X W, YANG Z W, KONG C C, LIU B. Lewis acidic Vox engineered PdAu nanocatalysts for efficient formic acid dehydrogenation[J]. Adv. Energy Mater., 2025, 15(1): 2402650
doi: 10.1002/aenm.202402650
-
[14]
TANG S Y, ZHANG Z P, LV Q J, PAN X Q, DONG J L, LIU L Y, WAN Y Y, HAN J, SONG F Z. Heteroatom engineering in earth-abundant cobalt electrocatalyst for energy-saving hydrogen evolution coupling with urea oxidation[J]. ACS Appl. Mater. Interfaces, 2024, 16(48): 66008
doi: 10.1021/acsami.4c11228
-
[15]
CHAI H, HU J S, ZHANG R M, FENG Y C, LI H D, LIU Z T, ZHOU C H, WANG X L. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica[J]. J. Colloid Interf. Sci., 2025, 678: 261-271
doi: 10.1016/j.jcis.2024.09.130
-
[16]
CHEN L Y, LUQUE R, LI Y W. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chem. Soc. Rev., 2017, 46: 4614-4630
doi: 10.1039/C6CS00537C
-
[17]
WANG C L, TUNINETTI J, WANG Z, ZHANG C, CIGANDA R, SALMON L, MOYA S, RUIZ J, ASTRUC D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release[J]. J. Am. Chem. Soc., 2017, 139(33): 11610-11615
doi: 10.1021/jacs.7b06859
-
[18]
YANG X C, XU Q. Bimetallic metal-organic frameworks for gas storage and separation[J]. Cryst. Growth Des., 2017, 17(4): 1450-1455
doi: 10.1021/acs.cgd.7b00166
-
[19]
KIM C R, UEMURA T, KITAGAWA S. Inorganic nanoparticles in porous coordination polymers[J]. Chem. Soc. Rev., 2016, 45: 3828-3845
doi: 10.1039/C5CS00940E
-
[20]
ZHAO M T, DENG K, HE L C, LIU Y, LI G D, ZHAO H J, TANG Z Y. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions[J]. J. Am. Chem. Soc., 2014, 136(5): 1738-1741
doi: 10.1021/ja411468e
-
[21]
ZHU B J, XIA D G, ZOU R Q. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts[J]. Coord. Chem. Rev., 2018, 376: 430-448
doi: 10.1016/j.ccr.2018.07.020
-
[22]
CAO W X, LUO W H, GE H G, SU Y, WANG A Q, ZHANG T. UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone[J]. Green Chem., 2017, 19: 2201-2211
doi: 10.1039/C7GC00512A
-
[23]
CAO X H, TAN C L, SINDORO M, ZHANG H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev., 2017, 46: 2660-2677
doi: 10.1039/C6CS00426A
-
[24]
SINGH B, DRAKSHARAPU A. Recent progress in catalysis using high-entropy metal-organic frameworks and their derived materials[J]. ChemSusChem, 2025, 18: e202500750
doi: 10.1002/cssc.202500750
-
[25]
ZHAO H Y, DU W C, HOU Z Y. Metal organic frameworks derived catalysts for the upgrading of platform chemicals[J]. ChemCatChem, 2024, 16: e202301291
doi: 10.1002/cctc.202301291
-
[26]
LI J, ZHU Q L, XU Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane[J]. Chem. Commun., 2014, 50: 5899-5901
doi: 10.1039/c4cc00785a
-
[27]
WANG W, LU Z H, LUO Y, ZOU A H, YAO Q L, CHEN X S. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018, 10(7): 1620-1626
doi: 10.1002/cctc.201701989
-
[28]
CHEN Y, YANG X C, KITTA M, XU Q. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res., 2017, 10: 3811-3816
doi: 10.1007/s12274-017-1593-4
-
[29]
HOU C C, LI Q, WANG C J, PENG C Y, CHEN Q Q, YE H F, FU W F, CHE C M, LÓPEZ N, CHEN Y. Ternery Ni-Co-P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy Environ. Sci., 2017, 10(8): 1770-1776
doi: 10.1039/C7EE01553D
-
[30]
PACHFULE P, YANG X C, ZHU Q L, TSUMORI N, UCHIDA T, XU Q. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon[J]. J. Mater. Chem. A, 2017, 5: 4835-4841
doi: 10.1039/C6TA10748F
-
[31]
SONG F Z, ZHU Q L, YANG X C, XU Q. Monodispersed CuCo nanoparticles supported on diamine-functionalized graphene as a non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane[J]. ChemNanoMat, 2016, 2(10): 942-945
doi: 10.1002/cnma.201600198