Citation: Xinnan XIE, Boyu ZHANG, Jianxun YANG, Yi ZHONG, Younis Osama, Jianxiao YANG, Xinchun YANG. Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025 shu

Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane

Figures(4)

  • Ultrafine, highly dispersed Pt clusters were immobilized onto the Co nanoparticle surfaces by one-step pyrolysis of the precursor Pt(Ⅱ)-encapsulating Co-MOF-74. Owing to the small size effects of Pt clusters as well as the strongly enhanced synergistic interactions between Pt and Co atoms, the obtained Pt-on-Co/C400 catalysts exhibited excellent catalytic activity toward the hydrolysis of ammonia borane with an extremely high turnover frequency (TOF) value of 3 022 min-1 at 303 K. Durability test indicated that the obtained Pt-on-Co/C400 catalysts possessed high catalytic stability, and there were no changes in the catalyst structures and catalytic activities after 10 cycles.
  • 加载中
    1. [1]

      YAO Q, LU Z H, YANG Y, CHEN X, JIANG H L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res., 2018, 11: 4412-4422  doi: 10.1007/s12274-018-2031-y

    2. [2]

      LI Z, HE T, LIU L, CHEN W D, ZHANG M, WU G T, CHEN P. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design[J]. Chem. Sci., 2017, 8(1): 781- 788  doi: 10.1039/C6SC02456D

    3. [3]

      YANG X C, BULUSHEV D A, YANG J, ZHANG Q. New liquid chemical hydrogen storage technology[J]. Energies, 2022, 15(17): 6360  doi: 10.3390/en15176360

    4. [4]

      ZHANG Z P, TANG S Y, XU L L, WANG J, LI A S, JING M X, YANG X C, SONG F Z. Encapsulation of ruthenium oxide nanoparticles in nitrogen-doped porous carbon polyhedral for pH-universal hydrogen evolution electrocatalysis[J]. Int. J. Hydrog. Energy, 2024, 74: 10-16  doi: 10.1016/j.ijhydene.2024.06.061

    5. [5]

      NAVLANI-GARCIA M, MORI K, KUWAHARA Y, YAMASHITA H. Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts[J]. NPG Asia Mater., 2018, 10: 277-292  doi: 10.1038/s41427-018-0025-6

    6. [6]

      YANG X C, CHEN L Y, LIU H Y, KURIHARA T, HORIKE S, XU Q. Encapsulating ultrastable metal nanoparticles within reticular Schiff base nanospaces for enhanced catalytic performance[J]. Cell Rep. Phys. Sci., 2021, 2(1): 100289  doi: 10.1016/j.xcrp.2020.100289

    7. [7]

      YANG X, SUN J K, KITTA M, PANG H, XU Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages[J]. Nat. Catal., 2018, 1(3): 214-220  doi: 10.1038/s41929-018-0030-8

    8. [8]

      SUN Q M, WANG N, BING Q M, SI R, LIU J Y, BAI R S, ZHANG P, JIA M J, YU J H. Subnanometric hybrid Pd-M(OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation[J]. Chem, 2017, 3(3): 477-493  doi: 10.1016/j.chempr.2017.07.001

    9. [9]

      HE L, WENIGER F, NEUMANN H, BELLER M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry[J]. Angew. Chem.-Int. Edit., 2016, 55(41): 12582-12594  doi: 10.1002/anie.201603198

    10. [10]

      XIAO X Y, SHANG Y M, BAI Y, MIAO H, LU X W, LEE K Y J, AHN J P, YOUNIS O, YU T K Y, YANG X C. Pt-decorated bimetallic PdRu nanocubes with tailorable surface electronic structures for highly efficient acidic hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2024, 71: 1026-1033  doi: 10.1016/j.ijhydene.2024.05.066

    11. [11]

      KUMAR A, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: A highly efficient catalyst for dehydrogenation of hydrous hydrazine[J]. J. Mater. Chem. A, 2019, 7(1): 112-115  doi: 10.1039/C8TA09003C

    12. [12]

      CHEN Y, FAN Z X, LUO Z M, LIU X Z, LAI Z C, LI B, ZONG Y, GU L, ZHANG H. Highly-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation[J]. Adv. Mater., 2017, 29(36): 1701331  doi: 10.1002/adma.201701331

    13. [13]

      LIU D, YAO H Q, WANG H, ZHANG X W, YANG Z W, KONG C C, LIU B. Lewis acidic Vox engineered PdAu nanocatalysts for efficient formic acid dehydrogenation[J]. Adv. Energy Mater., 2025, 15(1): 2402650  doi: 10.1002/aenm.202402650

    14. [14]

      TANG S Y, ZHANG Z P, LV Q J, PAN X Q, DONG J L, LIU L Y, WAN Y Y, HAN J, SONG F Z. Heteroatom engineering in earth-abundant cobalt electrocatalyst for energy-saving hydrogen evolution coupling with urea oxidation[J]. ACS Appl. Mater. Interfaces, 2024, 16(48): 66008  doi: 10.1021/acsami.4c11228

    15. [15]

      CHAI H, HU J S, ZHANG R M, FENG Y C, LI H D, LIU Z T, ZHOU C H, WANG X L. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica[J]. J. Colloid Interf. Sci., 2025, 678: 261-271  doi: 10.1016/j.jcis.2024.09.130

    16. [16]

      CHEN L Y, LUQUE R, LI Y W. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chem. Soc. Rev., 2017, 46: 4614-4630  doi: 10.1039/C6CS00537C

    17. [17]

      WANG C L, TUNINETTI J, WANG Z, ZHANG C, CIGANDA R, SALMON L, MOYA S, RUIZ J, ASTRUC D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release[J]. J. Am. Chem. Soc., 2017, 139(33): 11610-11615  doi: 10.1021/jacs.7b06859

    18. [18]

      YANG X C, XU Q. Bimetallic metal-organic frameworks for gas storage and separation[J]. Cryst. Growth Des., 2017, 17(4): 1450-1455  doi: 10.1021/acs.cgd.7b00166

    19. [19]

      KIM C R, UEMURA T, KITAGAWA S. Inorganic nanoparticles in porous coordination polymers[J]. Chem. Soc. Rev., 2016, 45: 3828-3845  doi: 10.1039/C5CS00940E

    20. [20]

      ZHAO M T, DENG K, HE L C, LIU Y, LI G D, ZHAO H J, TANG Z Y. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions[J]. J. Am. Chem. Soc., 2014, 136(5): 1738-1741  doi: 10.1021/ja411468e

    21. [21]

      ZHU B J, XIA D G, ZOU R Q. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts[J]. Coord. Chem. Rev., 2018, 376: 430-448  doi: 10.1016/j.ccr.2018.07.020

    22. [22]

      CAO W X, LUO W H, GE H G, SU Y, WANG A Q, ZHANG T. UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone[J]. Green Chem., 2017, 19: 2201-2211  doi: 10.1039/C7GC00512A

    23. [23]

      CAO X H, TAN C L, SINDORO M, ZHANG H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev., 2017, 46: 2660-2677  doi: 10.1039/C6CS00426A

    24. [24]

      SINGH B, DRAKSHARAPU A. Recent progress in catalysis using high-entropy metal-organic frameworks and their derived materials[J]. ChemSusChem, 2025, 18: e202500750  doi: 10.1002/cssc.202500750

    25. [25]

      ZHAO H Y, DU W C, HOU Z Y. Metal organic frameworks derived catalysts for the upgrading of platform chemicals[J]. ChemCatChem, 2024, 16: e202301291  doi: 10.1002/cctc.202301291

    26. [26]

      LI J, ZHU Q L, XU Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane[J]. Chem. Commun., 2014, 50: 5899-5901  doi: 10.1039/c4cc00785a

    27. [27]

      WANG W, LU Z H, LUO Y, ZOU A H, YAO Q L, CHEN X S. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018, 10(7): 1620-1626  doi: 10.1002/cctc.201701989

    28. [28]

      CHEN Y, YANG X C, KITTA M, XU Q. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res., 2017, 10: 3811-3816  doi: 10.1007/s12274-017-1593-4

    29. [29]

      HOU C C, LI Q, WANG C J, PENG C Y, CHEN Q Q, YE H F, FU W F, CHE C M, LÓPEZ N, CHEN Y. Ternery Ni-Co-P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy Environ. Sci., 2017, 10(8): 1770-1776  doi: 10.1039/C7EE01553D

    30. [30]

      PACHFULE P, YANG X C, ZHU Q L, TSUMORI N, UCHIDA T, XU Q. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon[J]. J. Mater. Chem. A, 2017, 5: 4835-4841  doi: 10.1039/C6TA10748F

    31. [31]

      SONG F Z, ZHU Q L, YANG X C, XU Q. Monodispersed CuCo nanoparticles supported on diamine-functionalized graphene as a non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane[J]. ChemNanoMat, 2016, 2(10): 942-945  doi: 10.1002/cnma.201600198

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    4. [4]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    5. [5]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    6. [6]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    7. [7]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    8. [8]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    9. [9]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    12. [12]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    13. [13]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    14. [14]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    15. [15]

      Xinbao TongJiaying LiuYanqi ZhaoJingjun LiYe TianQingyi LiuShuiying GaoRong Cao . Metal-organic framework supported carbon quantum dots as white light-emitting phosphor. Chinese Chemical Letters, 2025, 36(7): 111058-. doi: 10.1016/j.cclet.2025.111058

    16. [16]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    19. [19]

      Yuting FuHaoran WangNan LiLujiao MaoXusheng WangQipeng LiJinjie Qian . Pt inclusion effect on Ni-ABDC-derived PtNi-carbon nanomaterials for hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 110890-. doi: 10.1016/j.cclet.2025.110890

    20. [20]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

Metrics
  • PDF Downloads(1)
  • Abstract views(25)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return