Citation: Jiahe LIU, Gan TANG, Kai CHEN, Mingda ZHANG. Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023 shu

Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries

  • Corresponding author: Mingda ZHANG, matchlessjimmy@163.com
  • Received Date: 18 January 2025
    Revised Date: 13 March 2025

Figures(8)

  • To solve the problem of poor low-temperature performance of lithium-ion batteries (LIBs), an effective method was proposed to improve the low-temperature performance of batteries by adjusting the electrolyte additive formulation. Among them, the additive formulation of lithium tetrafluoroborate (LiBF4)+vinylidene carbonate (VC)+1, 3-propane sulfonate lactone (PS)+fluorinated ethylene carbonate (FEC) had a better protection effect on the electrode. It can improve the electrochemical performance of the battery. The results showed that the target electrolyte had good low-temperature performance, with 0.2C first discharge specific capacities of 144.65 and 133.05 mAh·g-1 for the electrode at -20 and -40 ℃, respectively, and good cycling stability. It is shown that the use of multifunctional additives can significantly improve the diffusion rate of lithium ions and promote the release of lithium ions on the electrode surface. Meanwhile, the better film-forming performance can also reduce the polarization of the battery and ultimately achieve high-capacity and high-stability battery performance under low-temperature conditions.
  • 加载中
    1. [1]

      HARPER G, SOMMERVILLE R, KENDRICK E, DRISCOLL L, SLATER P, STOLKIN R, WALTON A, CHRISTENSEN P, HEIDRICH O, LAMBERT S, ABBOTT A, RYDER K, GAINES L, ANDERSON P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019,575(7781):75-86.

    2. [2]

      LU Y, HOU X S, MIAO L C, LI L, SHI R J, LIU L J, CHEN J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithiumion batteries[J]. Angew. Chem.-Int. Edit., 2019,58(21):7020-7024.

    3. [3]

      XIE J, LU Y C. A retrospective on lithiumion batteries[J]. Nat. Commun., 2020,11(1)2499.

    4. [4]

      SHI J L, EHTESHAMI N, MA J L, ZHANG H, LIU H D, ZHANG X, LI J, PAILLARD E. Improving the graphite/electrolyte interface in lithium ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive[J]. J. Power Sources, 2019,429:67-74.

    5. [5]

      WANG C S. Electrolyte design for ultra-stable, low-temperature lithium-ion batteries[J]. Matter, 2023,6(8):2610-2612. doi: 10.1016/j.matt.2023.07.006

    6. [6]

      MENG F B, XIONG X Y, TAN L, YUAN B, HU R Z. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero temperature Liion batteries: A review[J]. Energy Storage Mater., 2022,44:390-407.

    7. [7]

      WANG B, YAN M Y. Research on the improvement of lithium ion battery performance at low temperatures based on electromagnetic induction heating technology[J]. Energies, 2023,16(23)7780. doi: 10.3390/en16237780

    8. [8]

      ZHANG C H, HUO S D, SU B, BI C J, ZHANG C, XUE W D. Challenges of film-forming additives in low-temperature lithium-ion batteries: A review[J]. J. Power Sources, 2024,606234559. doi: 10.1016/j.jpowsour.2024.234559

    9. [9]

      ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li ion batteries[J]. Nat. Energy, 2018,3(5):373-386. doi: 10.1038/s41560-018-0097-0

    10. [10]

      KOLETI U R, ZHANG C, MALIK R, DINH T Q, MARCO J. The development of optimal charging strategies for lithium-ion batteries to prevent the onset of lithium plating at low ambient temperatures[J]. J. Energy Storage, 2019,24100798. doi: 10.1016/j.est.2019.100798

    11. [11]

      XIAO P, YUN X R, CHEN Y F, GUO X W, GAO P, ZHOU G M, ZHENG C M. Insights into the solvation chemistry in liquid electrolytes for lithium based rechargeable batteries[J]. Chem. Soc. Rev., 2023,52(15):5255-5316. doi: 10.1039/D3CS00151B

    12. [12]

      HUBBLE D, BROWN D E, ZHAO Y Z, FANG C, LAU J, McCLOSKEY B D, LIU G. Liquid electrolyte development for lowtemperature lithium-ion batteries[J]. Energy Environ. Sci., 2022,15(2):550-578.

    13. [13]

      MING J, CAO Z, WU Y Q, WAHYUDI W, WANG W X, GUO X R, CAVALLO L, HWANG J Y, SHAMIM A, LI L J, SUN Y K, ALSHAREEF H N. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Lett., 2019,4(11):2613-2622.

    14. [14]

      LV W X, ZHU C J, CHEN J, OU C X, ZHANG Q, ZHONG S W. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chem. Eng. J., 2021,418129400.

    15. [15]

      WANG Y K, LI Z M, HOU Y P, HAO Z M, ZHANG Q, NI Y X, LU Y, YAN Z H, ZHANG K, ZHAO Q, LI F J, CHEN J. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chem. Soc. Rev., 2023,52(8):2713-2763. doi: 10.1039/D2CS00873D

    16. [16]

      FAN X L, JI X, CHEN L, CHEN J, DENG T, HAN F D, YUE J, PIAO N, WANG R X, ZHOU X Q, XIAO X Z, CHEN L X, WANG C S. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nat. Energy, 2019,4(10):882-890.

    17. [17]

      ZHENG J M, YAN P F, MEI D H, ENGELHARD M H, CARTMELL S S, POLZIN B J, WANG C M, ZHANG J G, XU W. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer[J]. Adv. Energy Mater., 2016,6(8)1502151.

    18. [18]

      YANG B W, ZHANG H, YU L, FAN W Z, HUANG D H. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochim. Acta, 2016,221:107-114.

    19. [19]

      HEKMATFAR M, HASA I, EGHBAL R, CARVALHO D V, MORETTI A, PASSERINI S. Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes[J]. Adv. Mater. Interfaces, 2020,7(1)1901500.

    20. [20]

      ZHENG J X, LU J, AMINE K, PAN F. Depolarization effect to enhance the performance of lithium ion batteries[J]. Nano Energy, 2017,33:497-507.

    21. [21]

      PHAM H Q, CHUNG G J, HAN J, HWANG E H, KWON Y G, SONG S W. Interface stabilization via lithium bis (fluorosulfonyl) imide additive as a key for promoted performance of graphite||LiCoO2 pouch cell under -20 ℃[J]. J. Chem. Phys., 2020,152(9)094709.

    22. [22]

      LIN Y C, YUE X P, ZHANG H, YU L, FAN W Z, XIE T. Using phenyl methanesulfonate as an electrolyte additive to improve performance of LiNi0.5Co0.2Mn0.3O2/graphite cells at low temperature[J]. Electrochim. Acta, 2019,300:202-207.

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    12. [12]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(0)
  • Abstract views(36)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return