Citation: Ping LI, Geng TAN, Xin HUANG, Fuxing SUN, Jiangtao JIA, Guangshan ZHU, Jia LIU, Jiyang LI. Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020 shu

Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture

Figures(4)

  • Ammonia, a toxic gas, poses significant risks to human health and the environment. Developing cost- effective and eco-friendly adsorbents for ammonia capture is crucial. In this study, a La3+-based metal-organic framework {[La4(QS)6(H2O)6]·18H2O}n (MOF-LaQS) was synthesized via a simple low-temperature hydrothermal method using inexpensive 8-hydroxyquinoline-5-sulfonic acid (H2QS) as organic ligand. The material exhibited structural stability, low synthesis costs, and exceptional ammonia adsorption capacities of 228 cm3·g-1 (10.2 mmol·g-1) at 273 K (101 kPa) and 48 cm3·g-1 (2.14 mmol·g-1) at ultra-low pressure (0.101 kPa). In situ infrared spectroscopy and DFT calculations revealed that open La3+ sites are key to its ammonia adsorption, thereby elucidating the mechanism underlying its high ammonia uptake.
  • 加载中
    1. [1]

      LU H, TAN X H, WU S R, ZHOU Y M, HUANG G B, ZHANG J Y, ZHENG Q W, CAI Z XI, LI F M, ZHANG M S. Preparation of polymethyl methacrylate-coated (CH3NH3)PbBr3 nanocrystalline electrospinning film and fluorescence sensing of ammonia. Chinese J. Inorg. Chem. [J], 2023, 39(9): 1757-1765

    2. [2]

      ZENG X D, LI J N, HE M, LU W P, CRAWSHAW D, GUO L X, MA Y J, KIPPAX-JONES M, CHENG Y Q, MANUEL P, RUDIC S, FROGLEY M D, SCHRÖDER M, YANG S H. High adsorption of ammonia in a titanium-based metal-organic framework[J]. Chem. Commun., 2024, 60: 5912-5915  doi: 10.1039/D4CC01449A

    3. [3]

      KANG D W, JU S E, KIM D W, KANG M, KIM H, HONG C S. Emerging porous materials and their composites for NH3 gas removal[J]. Adv. Sci., 2020, 7: 2002142  doi: 10.1002/advs.202002142

    4. [4]

      RIETH A J, WRIGHT A M, DINCA M. Kinetic stability of metal- organic frameworks for corrosive and coordinating gas capture[J]. Nat. Rev. Mater., 2019, 4: 708-725  doi: 10.1038/s41578-019-0140-1

    5. [5]

      WOELLNER M, HAUSDORF S, KLEIN N, MUELLER P, SMITH M W, KASKEL S. Adsorption and detection of hazardous trace gases by metal-organic frameworks[J]. Adv. Mater., 2018, 30: 1704679  doi: 10.1002/adma.201704679

    6. [6]

      WARNER J X, DICKERSON R R, WEI Z, STROW L L, WANG Y, LIANG Q. Increased atmospheric ammonia over the world′s major agricultural areas detected from space[J]. Geophys. Res. Lett., 2017, 44: 2875-2884  doi: 10.1002/2016GL072305

    7. [7]

      HAN X, YANG S H, SCHRODER M J. Metal-organic framework materials for production and distribution of ammonia[J]. J. Am. Chem. Soc., 2023, 145: 1998-2012

    8. [8]

      RIETH A J, TULCHINSKY Y, DINCA M. High and reversible ammonia uptake in mesoporous azolate metal-organic frameworks with open Mn, Co, and Ni sites[J]. J. Am. Chem. Soc., 2016, 138: 9401-9404  doi: 10.1021/jacs.6b05723

    9. [9]

      RIETH A J, DINCA M. Controlled gas uptake in metal-organic frameworks with record ammonia sorption[J]. J. Am. Chem. Soc., 2018, 140: 3461-3466  doi: 10.1021/jacs.8b00313

    10. [10]

      KIM D W, KANG D W, KANG M, LEE J H, CHOE J H, CHAE Y S, CHOI D S, YUN H, HONG C S. High ammonia uptake of a metal- organic framework adsorbent in a wide pressure range[J]. Angew. Chem. ‒Int. Edit., 2020, 59: 22531-22536

    11. [11]

      KIM D W, KANG D W, KANG M, CHOI D S, YUN H, KIM S Y, LEE S M, LEE J H, HONG C S. High gravimetric and volumetric ammonia capacities in robust metal-organic frameworks prepared via double postsynthetic modification[J]. J. Am. Chem. Soc., 2022, 144: 9672-9683

    12. [12]

      ZHAO X, SUN L, ZHAI Z X, TIAN D, WANG Y, ZOU X Q, MIN C G, ZHUANG C F. An ultrastable La-MOF for catalytic hydrogen transfer of furfural: In situ activation of the surface[J]. Nanoscale, 2023, 15: 6645-6654

    13. [13]

      HÜBSCHLE C B, SHELDRICK G M, DITTRICH B. ShelXle: A Qt graphical user interface for SHELXL[J]. J. Appl. Crystallogr., 2011, 44: 1281-1284

    14. [14]

      KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6: 15-50  doi: 10.1016/0927-0256(96)00008-0

    15. [15]

      BLOCHL P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50: 17953-17979  doi: 10.1103/PhysRevB.50.17953

    16. [16]

      PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992, 46: 6671-6687  doi: 10.1103/PhysRevB.46.6671

  • 加载中
    1. [1]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    12. [12]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    14. [14]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    15. [15]

      Xiaoyong ZHAIYao KOUPingru SUYu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

Metrics
  • PDF Downloads(0)
  • Abstract views(31)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return