Citation: Yanfen PENG, Xinyue WANG, Tianbao LIU, Xiaoshuo WU, Yujing WEI. Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018 shu

Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene

  • Corresponding author: Yanfen PENG, pengyanfen1978@126.com
  • Received Date: 15 January 2025
    Revised Date: 18 April 2025

Figures(9)

  • Four new coordination polymers, {[Cd(mbtx)(4OHphCOO)]NO3}n (1), {[Zn(mbtx)(1, 4‐bdc)0.5(H2O)2]·(1, 4‐bdc)0.5·4H2O}n (2), {[Cd2(mbtx)(5NO2‐bdc)2(H2O)3]·4.5H2O}n (3), and {[Zn(H2O)6][Zn2(mbtx)2(btc)2(H2O)4]·2H2O}n (4) (mbtx=1, 3‐bis(4H‐1, 2, 4‐triazole)benzene, 4OHphCOO-=p‐hydroxybenzoate, 1, 4‐bdc2-=1, 4‐benzenedicarboxylate, 5NO2‐bdc2-=5‐nitro‐isophthalate, btc3-=1, 3, 5‐benzenetricarboxylate), were synthesized under room temperature condition and characterized by single‐crystal X‐ray diffraction, elemental analyses, and powder X‐ray diffraction. Single‐crystal X‐ray structural analysis shows that complexes 1 and 3 are 2D networks. In 1, the adjacent 2D networks are linked to a 3D network by ππ stacking interaction. 2 and 4 exhibit 1D chains, and the 1D chains are connected into a 3D network by ππ stacking interaction and intermolecular hydrogen bond. Luminescence and thermogravimetric analysis of the four complexes were discussed.
  • 加载中
    1. [1]

      DU M, LI C P, LIU C S, FANG S M. Design and construction of coordination polymers with mixed‐ligand synthetic strategy[J]. Coord. Chem. Rev., 2013,257(7/8):1282-1305.

    2. [2]

      CHEN S S, LIU Q, ZHAO Y, QIAO R, SHENG L Q, LIU Z D, YANG S, SONG C F. New metal‐organic frameworks constructed from the 4‐imidazole‐carboxylate ligand: Structural diversities, luminescence, and gas adsorption properties[J]. Cryst. Growth Des., 2014,14(8):3727-3741. doi: 10.1021/cg401811c

    3. [3]

      NIWA S, SADAKIYO M. Preparation of a Mg2+‐containing MOF through ion exchange and its high ionic conductivity[J]. Dalton Trans., 2022,51:12037-12040. doi: 10.1039/D2DT02166H

    4. [4]

      WANG X P, LI M L, ZHANG J, HE X H, CRITTENDEN J C, ZHANG W. Silver ion‐exchanged anionic metal‐organic frameworks for iodine adsorption: Silver species evolution from ions to nanoparticles[J]. ACS Appl. Nano Mater., 2023,6:7206-7217. doi: 10.1021/acsanm.3c00264

    5. [5]

      SUN Y X, GUO G, DING W M, HAN W Y, LI J, DENG Z P. A highly stable Eu‐MOF multifunctional luminescent sensor for the effective detection of Fe3+, Cr2O72-/CrO42- and aspartic acid in aqueous systems[J]. CrystEngComm, 2022,24:1358-1367. doi: 10.1039/D1CE01432C

    6. [6]

      ROJAS‐ GARCĺA E, GARCĺA‐ MARTĺNEZ D C, LĺPEZ‐ MEDINA R, RUBIO‐ MARCOS F, CASTAÑEDA‐ RAMĺREZ A A, MAUBERT‐ FRANCO A M. Photocatalytic degradation of dyes using titania nanoparticles supported in metal‐organic materials based on iron[J]. Molecules, 2022,277078. doi: 10.3390/molecules27207078

    7. [7]

      SAHOO R, MONDALS , CHANDS , MANNA A K, DAS M C. A water‐stable cationic SIFSIX MOF for luminescent probing of Cr2O72- via single‐crystal to single‐crystal transformation[J]. Small, 20232304581.

    8. [8]

      LI Y, ZHANG M, WANG Y, GUAN L, ZHAO D, HAO X, GUO Y. A Zn(Ⅱ) coordination polymer for fluorescent turn‐off selective sensing of heavy metal cation and toxic inorganic anions[J]. Molecules, 2024,292943. doi: 10.3390/molecules29122943

    9. [9]

      ZHU S D, ZHOU Y L, LEI Y, WEN H R, LIU S J, LIU C M, ZHANG S Y, LU Y B. Combined performance of circularly polarized luminescence and proton conduction in homochiral cadmium(Ⅱ)‐terbium(Ⅲ) complexes[J]. Inorg. Chem. Front., 2024,11:1531-1539. doi: 10.1039/D3QI02327C

    10. [10]

      YU Y Q, SUN S B, DENG W H, LI J, LU Z Y, HE J H, WANG L S, MENG X G. Synthesis, structures and luminescence of several coordination complexes based on β‐octamolybdate and Ag/Cu phosphine units[J]. CrystEngComm, 2024,26:4329-4338. doi: 10.1039/D4CE00496E

    11. [11]

      HORCAJADA P, SERRE C, VALLET‐ REGĺ MARĺA, SEBBAN M, TAULELLE F, FÉREY GÉRARD. Metal‐organic frameworks as efficient materials for drug delivery[J]. Angew. Chem.‒Int. Edit., 2006,45:5974-5978. doi: 10.1002/anie.200601878

    12. [12]

      MCKINLAY A C, XIAO B, WRAGG D S, WHEATLEY P S, MEGSON I L, MORRIS R E. Exceptional behavior over the whole adsorption‐storage‐delivery cycle for NO in porous metal organic frameworks[J]. J. Am. Chem. Soc., 2008,130:10440-10444. doi: 10.1021/ja801997r

    13. [13]

      WU X, YANG Z, SANG X, TIAN X, WEI X. Aromatic amine electrochemical sensors based on a Co‐MOF: A hydrogen bond‐induced specific response[J]. Dalton Trans., 2022,51:16861-16869. doi: 10.1039/D2DT02049A

    14. [14]

      LIU L, DING R, MAO Y Y, SUN B Q. Theoretical investigations on the nitro‐explosive sensing process of a MOF sensor: Roles of hydrogen bond and ππ stacking[J]. Chem. Phys. Lett., 2022,793139393. doi: 10.1016/j.cplett.2022.139393

    15. [15]

      KUMARI P P N C, ASADEVI H, VEEDU S T, RAGHUNANDAN R. Hydrogen bond mediated turn‐on sensor: Ultra‐sensitive and label free barium‐MOF for probing malathion an organophosphate pesticide[J]. J. Mol. Struct., 2023,1286135542. doi: 10.1016/j.molstruc.2023.135542

    16. [16]

      PENG Y F, QIAN L L, DING J G, ZHENG T R, ZHANG Y Q, LI B L, LI H Y. Syntheses, structures and photocatalytic degradation of organic dyes for two isostructural copper coordination polymers involving in situ hydroxylation reaction[J]. J. Coord. Chem., 2018,71(9):1392-1402. doi: 10.1080/00958972.2018.1460664

    17. [17]

      PENG Y F, LIU T B, WU Q Y. Syntheses, crystal structures, and fluorescence properties of two 2D→2D coordination polymers based on the flexible 4‐substituted bis(1, 2, 4‐triazole) ligand[J]. Wuhan University Journal of Natural Science, 2019,24(1):8-14. doi: 10.1007/s11859-019-1362-1

    18. [18]

      PENG Y F, LIU T B, WU Q Y, WU M Q. Syntheses and luminescence of three zinc complexes constructed by rigid 4‐substitued bis(1, 2, 4‐triazole) ligand[J]. Chinese J. Inorg. Chem, 2022,38(2):344-352.

    19. [19]

      PENG Y F, ZHENG L Y, HAN S S, LI B L, LI H Y. Two zinc coordination polymers showing five‐fold interpenetrated diamondoid network and 2D→3D inclined polycatenation motif[J]. Inorg. Chem. Commun., 2014,44:41-45. doi: 10.1016/j.inoche.2014.02.051

    20. [20]

      NAIK A D, MARCHAND‐ BEYNAERT J, GARCIA Y. A simplified approach to N‐and N, N'‐linked 1, 2, 4‐triazoles by transamination[J]. Synthesis, 2008,1:149-154.

    21. [21]

      ZHOU X J, LIU L L, WU D X, NIU Y, ZHENG S M, LU J T, FENG Y M, TAI X S. A luminescent Cd‐MOF used as a chemosensor for high‐efficiency sensing of Fe3+, Cr􀃯, trinitrophenol and colchicine[J]. ACS Omega, 2024,9:11339-11346. doi: 10.1021/acsomega.3c07110

    22. [22]

      CHEN W, WANG J Y, CHEN C, YUE Q, YUAN H M, CHEN J S, WANG S N. Photoluminescent metal‐organic polymer constructed from trimetallic clusters and mixed carboxylates[J]. Inorg. Chem., 2003,42:944-946. doi: 10.1021/ic025871j

    23. [23]

      ZHANG G, XIA X Z, XU J H, XIA L X, WANG C, WU H L. A zinc(Ⅱ) coordination polymer based on a flexible bis(benzimidazole) ligand: Synthesis, crystal structure and fluorescence study[J]. Z. Naturforsch. B, 2020,75(12):1005-1009. doi: 10.1515/znb-2020-0094

    24. [24]

      ZHANG Z, ZHAO L, YU H Y, ZHANG H T. 2D coordination polymers of cadmium(Ⅱ) and zinc(Ⅱ) derived from N, N'‐bis(glycinyl)pyromellitic diimide: Microwave‐assisted synthesis, structures, spectroscopic properties and influence of metal‐ion size[J]. Acta Crystallogr. Sect. C, 2024,C80:633-647.

    25. [25]

      YANG P, WU X X, HUO J Z, DING B, WANG Y, WANG X G. Hydrothermal synthesis and characterization of a series of luminescent Zn(Ⅱ) and Cd(Ⅱ) coordination polymers with the new versatile multidentate ligand 1, 3‑di‑(1, 2, 4‑triazol‑4‑yl)benzene[J]. CrystEngComm, 2013,15:8097-8109. doi: 10.1039/c3ce40946e

    26. [26]

      LIU L, LI X L, XU C Y, HAN G, ZHAO Y, HOU H E, FAN Y T. Construction of six coordination networks based on a flexible bis(methylbenzimidazole) ligand and isomeric benzenedicarboxylates[J]. Inorg. Chim. Acta, 2012,391:66-74. doi: 10.1016/j.ica.2012.04.043

    27. [27]

      ZHANG Z Q, HUANG R D, XU Y Q, YU L Q, JIAO Z W, ZHU Q L, HU C W. Three complexes based on ligands 1‐hydroxybenzotriazole and 1, 4‐benzenedicarboxylic acid: Synthesis, structures and luminescence properties[J]. Inorg. Chim. Acta, 2009,362:5183-5189. doi: 10.1016/j.ica.2009.09.031

    28. [28]

      DU P, YANG Y, YANG J, LIU Y Y, KAN W Q, MA J F. A series of MOFs based on a tricarboxylic acid and various N‐donor ligands: Syntheses, structures, and properties[J]. CrystEngComm, 2013,15:6986-7002. doi: 10.1039/c3ce40828k

    29. [29]

      PENG Y F, LI K, ZHAO S, HAN S S, LI B L, LI H Y. Tuning zinc coordination architectures by benzenedicarboxylate position isomers and bis(triazole)[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2015,47:20-25.

    30. [30]

      LI K, BLATOV V A, FAN T, ZHENG T R, ZHANG Y Q, LI B L, WU B. A series of Cd(Ⅱ) coordination polymers based on flexible bis(triazole) and multicarboxylate ligands: Topological diversity, entanglement and properties[J]. CrystEngComm, 2017,19:5797-5808.

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    5. [5]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    6. [6]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    7. [7]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    8. [8]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    9. [9]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    10. [10]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    11. [11]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    12. [12]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    13. [13]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    14. [14]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    15. [15]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    16. [16]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    19. [19]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    20. [20]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return