Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation
- Corresponding author: Zhidong CHEN, chenzd@cczu.edu.cn Lin SUN, sunlin@nju.edu.cn
Citation:
Yang LIU, Lijun WANG, Hongyu WANG, Zhidong CHEN, Lin SUN. Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(4): 773-785.
doi:
10.11862/CJIC.20250015
SUN L, LIU Y, WANG L J, JIN Z. Advances and future prospects of micro-silicon anodes for high-energy-density lithium-ion batteries: A comprehensive review[J]. Adv. Funct. Mater., 2024,34(39)2403032.
TAO J M, HAN J J, WU Y B, YANG Y M, CHEN Y, LI J X, HUANG Z G, LIN Y B. Unraveling the performance decay of micro-sized silicon anodes in sulfidebased solidstate batteries[J]. Energy Storage Mater., 2024,64103082.
ZHUANG J C, XU X, PELECKIS G, HAO W C, DOU S X, DU Y. Silicene: A promising anode for lithium ion batteries[J]. Adv. Mater., 2017,29(48)1606716.
SUN L, LIU Y X, WU J, SHAO R, JIANG R Y, TIE Z X, JIN Z. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries[J]. Small, 2022,18(5)2102894.
FENG K, LI M, LIU W W, KASHKOOLI A G, XIAO X C, CAI M, CHEN Z W. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018,14(8)1702737.
STODDART A. Lithium-ion batteries: Stress relief for silicon[J]. Nat. Rev. Mater., 2017,2(8)17057. doi: 10.1038/natrevmats.2017.57
SHI F F, SONG Z C, ROSS P N, SOMORJAI G A, RITCHIE R O, KOMVOPOULOS K. Failure mechanisms of singlecrystal silicon electrodes in lithium-ion batteries[J]. Nat. Commun., 2016,7(1)11886. doi: 10.1038/ncomms11886
LIU J, LEE S Y, YOO J, KIM S, KIM J H, CHO H. Real-time observation of mechanical evolution of micro-sized Si anodes by in situ atomic force microscopy[J]. ACS Mater. Lett., 2022,4(5):840-846. doi: 10.1021/acsmaterialslett.2c00059
CHENG Z L, JIANG H, ZHANG X L, CHENG F Y, WU M H, ZHANG H J. Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries[J]. Adv. Funct. Mater., 2023,33(26)2301109. doi: 10.1002/adfm.202301109
LI Q Y, YI R, XU Y B, CAO X, WANG C M, XU W, ZHANG J G. Failure analysis and design principles of silicon-based lithium-ion batteries using micron sized porous silicon/carbon composite[J]. J. Power Sources, 2022,548232063. doi: 10.1016/j.jpowsour.2022.232063
SHI Q T, ZHOU J H, ULLAH S, YANG X Q, TOKARSKA K, TRZEBICKA B, TA H Q, RüMMELI M H. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Mater., 2021,34:735-54. doi: 10.1016/j.ensm.2020.10.026
CAO W Y, HAN K, CHEN M X, YE H Q, SANG S B. Particle size optimization enabled high initial Coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching[J]. Electrochim. Acta, 2019,320134613. doi: 10.1016/j.electacta.2019.134613
SOHN M, LEE D G, PARK H I, PARK C, CHOI J H, KIM H. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering[J]. Adv. Funct. Mater., 2018,28(23)1800855. doi: 10.1002/adfm.201800855
KAWAURA H, SUZUKI R, KONDO Y, MAHARA Y. Scalable synthesis of porous silicon by acid etching of atomized Al-Si alloy powder for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2023,15(29):34909-34921. doi: 10.1021/acsami.3c05521
XU Z Y, ZHENG E, XIAO Z W, SHAO H B, LIU Y C, WANG J M. Photo-initiated in situ synthesis of polypyrrole Fe-coated porous silicon microspheres for highperformance lithiumion battery anodes[J]. Chem. Eng. J., 2023,459141543. doi: 10.1016/j.cej.2023.141543
YI Z, LIN N, ZHAO Y Y, WANG W W, QIAN Y, ZHU Y C, QIAN Y T. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes[J]. Energy Storage Mater., 2019,17:93-100. doi: 10.1016/j.ensm.2018.07.025
LV Y Y, SHANG M W, CHEN X, NEZHAD P S, NIU J J. Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode[J]. ACS Nano, 2019,13(10):12032-12041. doi: 10.1021/acsnano.9b06301
TAO J M, LIU L W, HAN J J, PENG J J, CHEN Y, YANG Y M, YAO H R, LI J X, HUANG Z G, LIN Y B. New perspectives on spatial dynamics of lithiation and lithium plating in graphite/silicon composite anodes[J]. Energy Storage Mater., 2023,60102809. doi: 10.1016/j.ensm.2023.102809
XIANG B, LIU Y, MEI S X, LI Z, GUO S G, GUO X B, JIA Z M, SHE Y N, FU J J, CHU P K, HUO K, GAO B. High-conductivity and elasticity interface consisting of Li-Mg alloy and Li3N on silicon for robust Li-ion storage[J]. Energy Storage Mater., 2024,69103416. doi: 10.1016/j.ensm.2024.103416
ZHANG Z Q, HAN X, LI L C, SU P F, HUANG W, WANG J Y, XU J F, LI C, CHEN S Y, YANG Y. Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes[J]. J. Power Sources, 2020,450227593. doi: 10.1016/j.jpowsour.2019.227593
ZHANG Y, ZHANG R, CHEN S C, GAO H P, LI M Q, SONG X L, XIN H L, CHEN Z. Diatomite-derived hierarchical porous crystalline-amorphousnetwork for high-performance and sustainable Si anodes[J]. Adv. Funct. Mater., 2020,30(50)2005956. doi: 10.1002/adfm.202005956
WANG T T, WANG Z L, LI H Y, CHENG L, WU Y T, LIU X, MENG L C, ZHANG Y, JIANG S. Recent status, key strategies, and challenging prospects for fast charging silicon-based anodes for lithium-ion batteries[J]. Carbon, 2024,230119615.
LI Y J, TIAN Y R, DUAN J J, XIAO P, ZHOU P, PANG L, LI Y. Multi-functional double carbon shells coated boron-doped porous Si as anode materials for high performance lithium ion batteries[J]. Electrochim. Acta, 2023,462142712.
LIM J H, WON K, JEONG H M, SHIN W H, WON J H. Double carbon-species coated porous silicon anode induced by interfacial energy reduction for lithiumion batteries[J]. ChemSusChem, 2024e202401675. doi: 10.1002/cssc.202401675
CHEN H M, ZHENG Y X, WU Q M, ZHOU W B, WEI Q H, WEI M D. Dual carbon materials coated Ge/Si composite for high performance lithium-ion batteries[J]. Electrochim. Acta, 2022,417140337.
AVILA CARDENAS A, HERLIN-BOIME N, HAON C, MONCONDUIT L. Si1-xGex alloys as negative electrode for Liion batteries: Impact of morphology in the Li+diffusion, performance and mechanism[J]. Electrochim. Acta, 2024,475143691.
MISHRA K, GEORGE K, ZHOU X D. Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries[J]. Carbon, 2018,138:419-426.
GAO P B, WU H M, LIU W H, TIAN S, MU J L, MIAO Z C, ZHOU P F, ZHANG H N, ZHOU T, ZHOU J. Heterogeneous isomorphism hollow SiGe nanospheres with porous carbon reinforcing for superior electrochemical lithium storage[J]. J. Energy Chem., 2023,79:222-231.
XU J H, YIN Q Y, LI X R, TAN X Y, LIU Q, LU X, CAO B C, YUAN X T, LI Y Z, SHEN L, LU Y F. Spheres of graphene and carbon nanotubes embedding silicon as mechanically resilient anodes for lithium-ion batteries[J]. Nano Lett., 2022,22(7):3054-3061.
JING S L, JIANG H, HU Y J, SHEN J H, LI C Z. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J]. Adv. Funct. Mater., 2015,25(33):5395-5401.
SUN L, LIU Y, WANG L Y, CHEN Z D, JIN Z. Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries[J]. Nano Res., 2024,17(11):9737-9745.
NIE P, LE Z Y, CHEN G, LIU D, LIU X Y, WU H B, XU P C, LI X R, LIU F, CHANG L M, ZHANG X G, LU Y F. Graphene caging silicon particles for high performance lithium ion batteries[J]. Small, 2018,14(25)1800635.
WANG Q S, MENG T, LI Y H, YANG J D, HUANG B B, OU S Q, MENG C G, ZHANG S Q, TONG Y X. Consecutive chemical bonds reconstructing surface structure of silicon anode for high performance lithium-ion battery[J]. Energy Storage Mater., 2021,39:354-364.
XU C J, SHEN L, ZHANG W J, HUANG Y L, SUN Z F, ZHAO G Y, LIN Y B, ZHANG Q B, HUANG Z G, LI J X. Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes[J]. Energy Storage Mater., 2023,56:319-330.
ZHANG W, GUI S W, ZHANG Z H, LI W M, WANG X X, WEI J H, TU S B, ZHONG L X, YANG W, YE H J, SUN Y M, PENG X W, HUANG J Y, YANG H. Tight binding and dual encapsulation enabled stable thick silicon/carbon anode with ultrahigh volumetric capacity for lithium storage[J]. Small, 2023,19(48)2303864.
YANG Y H, LIU S, BIAN X F, FENG J K, AN Y L, YUAN C. Morphologyand porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode[J]. ACS Nano, 2018,12(3):2900-2908.
FU L L, XU A D, SONG Y, JU J H, SUN H, YAN Y R, WU S P. Pinecone-like silicon@carbon microspheres covered by Al2O3 nanopetals for lithium ion battery anode under high temperature[J]. Electrochim. Acta, 2021,387138461.
SUN L, JIANG X W, JIN Z. Interfacial engineering of porous SiOx @C composite anodes toward high performance lithium ion batteries[J]. Chem. Eng. J., 2023,474145960.
LI X, LI K, YUAN M, ZHANG J P, LIU H Y, LI A, CHEN X H, SONG H H. Graphenedoped siliconcarbon materials with multiinterface structures for lithium ion battery anodes[J]. J. Colloid Interface Sci., 2024,667:470-477.
YAN C F, HUANG T, ZHENG X Z, GONG C R, WU M X. Waterborne polyurethane as a carbon coating for micrometre-sized siliconbased lithium-ion battery anode material[J]. R. Soc. Open Sci., 2018,5(8)180311.
YAN L J, ZHANG H W, LI Z H, GAO X H, WANG H B, LIN Z, LING M, LIANG C D. Millimeter silicon-derived secondary submicron materials as high-initial Coulombic efficiency anode for lithiumion batteries[J]. ACS Appl. Energy Mater., 2020,3(10):10255-10260.
LU Y H, YE Z T, ZHAO Y T, LI Q, HE M Y, BAI C C, WANG X T, HAN Y L, WAN X C, ZHANG S L, MA Y F, CHEN Y S. Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials[J]. Carbon, 2023,201:962-971.
ZHAO J K, YANG K M, WANG J J, WEI D N, LIU Z E, ZHANG S G, YE W, ZHANG C, WANG Z L, YANG X J. Expired milk powder emulsion-derived carbonaceous framework/Si composite as efficient anode for lithium-ion batteries[J]. J. Colloid Interface Sci., 2023,638:99-108.
ZHAO J K, WANG B, ZHAN Z H, HU M Y, CAI F P, ŚWIERCZEK K, YANG K M, REN J N, GUO Z H, WANG Z L. Boron-doped threedimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes[J]. J. Colloid Interface Sci., 2024,664:790-800.
SHI H F, WANG C D, WANG J S, WANG D H, XIONG Z H, WANG Z K, WANG Z, BAI Z M, GAO Y, YAN X Q. Design of dual carbon encapsulated porous micron silicon composite with compact surface for enhanced reaction kinetics of lithium-ion battery anodes[J]. J. Colloid Interface Sci., 2024,668:459-470.
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Inset: The lattice fringe images of the target selected region.
Inset: Raman spectra of the local amplification of pSi and pSi/Ge.