Citation: Yang LIU, Lijun WANG, Hongyu WANG, Zhidong CHEN, Lin SUN. Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015 shu

Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation

Figures(8)

  • A novel porous silicon composite material (pSi/Ge@Gr/CNTs) was successfully fabricated by utilizing high-energy ball milling and electrostatic assembly techniques. This material starts with a commercial Al60Si40 alloy as the raw material. Through a simple acid etching process, a porous silicon (pSi) matrix was produced. Germanium (Ge) was then introduced into the matrix via ball milling. Finally, with the aid of electrostatic assembly, a dual coating of graphene (Gr) and carbon nanotubes (CNTs) was achieved, endowing the material with a unique structure. The incorporation of Ge introduction effectively augments the conductivity and ion transport characteristics of pSi, substantially bolstering the reversible capacity of the entire electrode. The hybrid encapsulation with Gr and CNTs further fortifies the stability, mechanical robustness, and electrical conductivity of the electrode. When utilized as anodes in LIBs, the pSi/Ge@Gr/CNTs electrode demonstrated outstanding electrochemical performance, achieving a reversible discharge specific capacity exceeding 700 mAh·g-1 after 100 cycles at a current density of 0.2 A·g-1, accompanied by a remarkably enhanced rate performance.
  • 加载中
    1. [1]

      SUN L, LIU Y, WANG L J, JIN Z. Advances and future prospects of micro-silicon anodes for high-energy-density lithium-ion batteries: A comprehensive review[J]. Adv. Funct. Mater., 2024,34(39)2403032.

    2. [2]

      TAO J M, HAN J J, WU Y B, YANG Y M, CHEN Y, LI J X, HUANG Z G, LIN Y B. Unraveling the performance decay of micro-sized silicon anodes in sulfidebased solidstate batteries[J]. Energy Storage Mater., 2024,64103082.

    3. [3]

      ZHUANG J C, XU X, PELECKIS G, HAO W C, DOU S X, DU Y. Silicene: A promising anode for lithium ion batteries[J]. Adv. Mater., 2017,29(48)1606716.

    4. [4]

      SUN L, LIU Y X, WU J, SHAO R, JIANG R Y, TIE Z X, JIN Z. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries[J]. Small, 2022,18(5)2102894.

    5. [5]

      FENG K, LI M, LIU W W, KASHKOOLI A G, XIAO X C, CAI M, CHEN Z W. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018,14(8)1702737.

    6. [6]

      STODDART A. Lithium-ion batteries: Stress relief for silicon[J]. Nat. Rev. Mater., 2017,2(8)17057. doi: 10.1038/natrevmats.2017.57

    7. [7]

      SHI F F, SONG Z C, ROSS P N, SOMORJAI G A, RITCHIE R O, KOMVOPOULOS K. Failure mechanisms of singlecrystal silicon electrodes in lithium-ion batteries[J]. Nat. Commun., 2016,7(1)11886. doi: 10.1038/ncomms11886

    8. [8]

      LIU J, LEE S Y, YOO J, KIM S, KIM J H, CHO H. Real-time observation of mechanical evolution of micro-sized Si anodes by in situ atomic force microscopy[J]. ACS Mater. Lett., 2022,4(5):840-846. doi: 10.1021/acsmaterialslett.2c00059

    9. [9]

      CHENG Z L, JIANG H, ZHANG X L, CHENG F Y, WU M H, ZHANG H J. Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries[J]. Adv. Funct. Mater., 2023,33(26)2301109. doi: 10.1002/adfm.202301109

    10. [10]

      LI Q Y, YI R, XU Y B, CAO X, WANG C M, XU W, ZHANG J G. Failure analysis and design principles of silicon-based lithium-ion batteries using micron sized porous silicon/carbon composite[J]. J. Power Sources, 2022,548232063. doi: 10.1016/j.jpowsour.2022.232063

    11. [11]

      SHI Q T, ZHOU J H, ULLAH S, YANG X Q, TOKARSKA K, TRZEBICKA B, TA H Q, RüMMELI M H. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Mater., 2021,34:735-54. doi: 10.1016/j.ensm.2020.10.026

    12. [12]

      CAO W Y, HAN K, CHEN M X, YE H Q, SANG S B. Particle size optimization enabled high initial Coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching[J]. Electrochim. Acta, 2019,320134613. doi: 10.1016/j.electacta.2019.134613

    13. [13]

      SOHN M, LEE D G, PARK H I, PARK C, CHOI J H, KIM H. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering[J]. Adv. Funct. Mater., 2018,28(23)1800855. doi: 10.1002/adfm.201800855

    14. [14]

      KAWAURA H, SUZUKI R, KONDO Y, MAHARA Y. Scalable synthesis of porous silicon by acid etching of atomized Al-Si alloy powder for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2023,15(29):34909-34921. doi: 10.1021/acsami.3c05521

    15. [15]

      XU Z Y, ZHENG E, XIAO Z W, SHAO H B, LIU Y C, WANG J M. Photo-initiated in situ synthesis of polypyrrole Fe-coated porous silicon microspheres for highperformance lithiumion battery anodes[J]. Chem. Eng. J., 2023,459141543. doi: 10.1016/j.cej.2023.141543

    16. [16]

      YI Z, LIN N, ZHAO Y Y, WANG W W, QIAN Y, ZHU Y C, QIAN Y T. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes[J]. Energy Storage Mater., 2019,17:93-100. doi: 10.1016/j.ensm.2018.07.025

    17. [17]

      LV Y Y, SHANG M W, CHEN X, NEZHAD P S, NIU J J. Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode[J]. ACS Nano, 2019,13(10):12032-12041. doi: 10.1021/acsnano.9b06301

    18. [18]

      TAO J M, LIU L W, HAN J J, PENG J J, CHEN Y, YANG Y M, YAO H R, LI J X, HUANG Z G, LIN Y B. New perspectives on spatial dynamics of lithiation and lithium plating in graphite/silicon composite anodes[J]. Energy Storage Mater., 2023,60102809. doi: 10.1016/j.ensm.2023.102809

    19. [19]

      XIANG B, LIU Y, MEI S X, LI Z, GUO S G, GUO X B, JIA Z M, SHE Y N, FU J J, CHU P K, HUO K, GAO B. High-conductivity and elasticity interface consisting of Li-Mg alloy and Li3N on silicon for robust Li-ion storage[J]. Energy Storage Mater., 2024,69103416. doi: 10.1016/j.ensm.2024.103416

    20. [20]

      ZHANG Z Q, HAN X, LI L C, SU P F, HUANG W, WANG J Y, XU J F, LI C, CHEN S Y, YANG Y. Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes[J]. J. Power Sources, 2020,450227593. doi: 10.1016/j.jpowsour.2019.227593

    21. [21]

      ZHANG Y, ZHANG R, CHEN S C, GAO H P, LI M Q, SONG X L, XIN H L, CHEN Z. Diatomite-derived hierarchical porous crystalline-amorphousnetwork for high-performance and sustainable Si anodes[J]. Adv. Funct. Mater., 2020,30(50)2005956. doi: 10.1002/adfm.202005956

    22. [22]

      WANG T T, WANG Z L, LI H Y, CHENG L, WU Y T, LIU X, MENG L C, ZHANG Y, JIANG S. Recent status, key strategies, and challenging prospects for fast charging silicon-based anodes for lithium-ion batteries[J]. Carbon, 2024,230119615.

    23. [23]

      LI Y J, TIAN Y R, DUAN J J, XIAO P, ZHOU P, PANG L, LI Y. Multi-functional double carbon shells coated boron-doped porous Si as anode materials for high performance lithium ion batteries[J]. Electrochim. Acta, 2023,462142712.

    24. [24]

      LIM J H, WON K, JEONG H M, SHIN W H, WON J H. Double carbon-species coated porous silicon anode induced by interfacial energy reduction for lithiumion batteries[J]. ChemSusChem, 2024e202401675. doi: 10.1002/cssc.202401675

    25. [25]

      CHEN H M, ZHENG Y X, WU Q M, ZHOU W B, WEI Q H, WEI M D. Dual carbon materials coated Ge/Si composite for high performance lithium-ion batteries[J]. Electrochim. Acta, 2022,417140337.

    26. [26]

      AVILA CARDENAS A, HERLIN-BOIME N, HAON C, MONCONDUIT L. Si1-xGex alloys as negative electrode for Liion batteries: Impact of morphology in the Li+diffusion, performance and mechanism[J]. Electrochim. Acta, 2024,475143691.

    27. [27]

      MISHRA K, GEORGE K, ZHOU X D. Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries[J]. Carbon, 2018,138:419-426.

    28. [28]

      GAO P B, WU H M, LIU W H, TIAN S, MU J L, MIAO Z C, ZHOU P F, ZHANG H N, ZHOU T, ZHOU J. Heterogeneous isomorphism hollow SiGe nanospheres with porous carbon reinforcing for superior electrochemical lithium storage[J]. J. Energy Chem., 2023,79:222-231.

    29. [29]

      XU J H, YIN Q Y, LI X R, TAN X Y, LIU Q, LU X, CAO B C, YUAN X T, LI Y Z, SHEN L, LU Y F. Spheres of graphene and carbon nanotubes embedding silicon as mechanically resilient anodes for lithium-ion batteries[J]. Nano Lett., 2022,22(7):3054-3061.

    30. [30]

      JING S L, JIANG H, HU Y J, SHEN J H, LI C Z. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J]. Adv. Funct. Mater., 2015,25(33):5395-5401.

    31. [31]

      SUN L, LIU Y, WANG L Y, CHEN Z D, JIN Z. Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries[J]. Nano Res., 2024,17(11):9737-9745.

    32. [32]

      NIE P, LE Z Y, CHEN G, LIU D, LIU X Y, WU H B, XU P C, LI X R, LIU F, CHANG L M, ZHANG X G, LU Y F. Graphene caging silicon particles for high performance lithium ion batteries[J]. Small, 2018,14(25)1800635.

    33. [33]

      WANG Q S, MENG T, LI Y H, YANG J D, HUANG B B, OU S Q, MENG C G, ZHANG S Q, TONG Y X. Consecutive chemical bonds reconstructing surface structure of silicon anode for high performance lithium-ion battery[J]. Energy Storage Mater., 2021,39:354-364.

    34. [34]

      XU C J, SHEN L, ZHANG W J, HUANG Y L, SUN Z F, ZHAO G Y, LIN Y B, ZHANG Q B, HUANG Z G, LI J X. Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes[J]. Energy Storage Mater., 2023,56:319-330.

    35. [35]

      ZHANG W, GUI S W, ZHANG Z H, LI W M, WANG X X, WEI J H, TU S B, ZHONG L X, YANG W, YE H J, SUN Y M, PENG X W, HUANG J Y, YANG H. Tight binding and dual encapsulation enabled stable thick silicon/carbon anode with ultrahigh volumetric capacity for lithium storage[J]. Small, 2023,19(48)2303864.

    36. [36]

      YANG Y H, LIU S, BIAN X F, FENG J K, AN Y L, YUAN C. Morphologyand porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode[J]. ACS Nano, 2018,12(3):2900-2908.

    37. [37]

      FU L L, XU A D, SONG Y, JU J H, SUN H, YAN Y R, WU S P. Pinecone-like silicon@carbon microspheres covered by Al2O3 nanopetals for lithium ion battery anode under high temperature[J]. Electrochim. Acta, 2021,387138461.

    38. [38]

      SUN L, JIANG X W, JIN Z. Interfacial engineering of porous SiOx @C composite anodes toward high performance lithium ion batteries[J]. Chem. Eng. J., 2023,474145960.

    39. [39]

      LI X, LI K, YUAN M, ZHANG J P, LIU H Y, LI A, CHEN X H, SONG H H. Graphenedoped siliconcarbon materials with multiinterface structures for lithium ion battery anodes[J]. J. Colloid Interface Sci., 2024,667:470-477.

    40. [40]

      YAN C F, HUANG T, ZHENG X Z, GONG C R, WU M X. Waterborne polyurethane as a carbon coating for micrometre-sized siliconbased lithium-ion battery anode material[J]. R. Soc. Open Sci., 2018,5(8)180311.

    41. [41]

      YAN L J, ZHANG H W, LI Z H, GAO X H, WANG H B, LIN Z, LING M, LIANG C D. Millimeter silicon-derived secondary submicron materials as high-initial Coulombic efficiency anode for lithiumion batteries[J]. ACS Appl. Energy Mater., 2020,3(10):10255-10260.

    42. [42]

      LU Y H, YE Z T, ZHAO Y T, LI Q, HE M Y, BAI C C, WANG X T, HAN Y L, WAN X C, ZHANG S L, MA Y F, CHEN Y S. Graphene supported double-layer carbon encapsulated silicon for high-performance lithium-ion battery anode materials[J]. Carbon, 2023,201:962-971.

    43. [43]

      ZHAO J K, YANG K M, WANG J J, WEI D N, LIU Z E, ZHANG S G, YE W, ZHANG C, WANG Z L, YANG X J. Expired milk powder emulsion-derived carbonaceous framework/Si composite as efficient anode for lithium-ion batteries[J]. J. Colloid Interface Sci., 2023,638:99-108.

    44. [44]

      ZHAO J K, WANG B, ZHAN Z H, HU M Y, CAI F P, ŚWIERCZEK K, YANG K M, REN J N, GUO Z H, WANG Z L. Boron-doped threedimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes[J]. J. Colloid Interface Sci., 2024,664:790-800.

    45. [45]

      SHI H F, WANG C D, WANG J S, WANG D H, XIONG Z H, WANG Z K, WANG Z, BAI Z M, GAO Y, YAN X Q. Design of dual carbon encapsulated porous micron silicon composite with compact surface for enhanced reaction kinetics of lithium-ion battery anodes[J]. J. Colloid Interface Sci., 2024,668:459-470.

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    3. [3]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    11. [11]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    12. [12]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    15. [15]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    16. [16]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    17. [17]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    18. [18]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(34)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return