Citation: Lixing ZHANG, Yaowen WANG, Xu HAN, Junhong ZHOU, Jinghui WANG, Liping LI, Guangshe LI. Research progress in the synthesis of fluorine-containing perovskites and their derivatives[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007 shu

Research progress in the synthesis of fluorine-containing perovskites and their derivatives

Figures(9)

  • Fluorine-containing perovskites and their derivatives have garnered extensive attention in new energy, optoelectronic devices, catalysis, and magnetic materials due to their excellent physical and chemical properties. The synthesis methods of these materials are one of the core aspects of research, as the choice and optimization of the synthetic pathway directly influence the structure, performance, morphology, and practical application of the materials. Currently, the main synthesis methods for fluorine-containing perovskites and their derivatives include traditional solid-state reactions, precipitation methods, hydrothermal/solvothermal techniques, emerging soft chemical synthesis methods, and deposition techniques. However, a systematic overview of these materials has yet to be provided. This paper reviews the synthesis methods of this class of compounds, summarizes the current challenges, and provides future perspectives, with the hope of promoting deeper and broader research in this field.
  • 加载中
    1. [1]

      CHU X B, YE Q F, WANG Z H, ZHANG C, MA F, QU Z H, ZHAO Y, YIN Z G, DENG H X, ZHANG X W, YOU J B. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency[J]. Nat. Energy, 2023, 8(4): 372-380  doi: 10.1038/s41560-023-01220-z

    2. [2]

      KISSICK J L, GREAVES C, EDWARDS P P, CHERKASHENKO V M, KURMAEV E Z, BARTKOWSKI S, NEUMANN M. Synthesis, structure, and XPS characterization of the stoichiometric phase Sr2CuO2F[J]. Phys. Rev. B, 1997, 56(5): 2831-2835  doi: 10.1103/PhysRevB.56.2831

    3. [3]

      JIA Z Y, SHI W, DING R, YU W J, LI Y, TAN C N, SUN X J, LIU E H. Conversion-type NiCoMn triple perovskite fluorides for advanced aqueous supercapacitors, batteries and supercapatteries[J]. Chem. Commun., 2021, 57(64): 7962-7965  doi: 10.1039/D1CC02488D

    4. [4]

      ZHANG J, YE Y, WANG Z B, XU Y, GUI L Q, HE B B, ZHAO L. Probing dynamic self-reconstruction on perovskite fluorides toward ultrafast oxygen evolution[J]. Adv. Sci., 2022, 9(27): e2201916  doi: 10.1002/advs.202201916

    5. [5]

      LIU M M, WAN Q, WANG H M, FRANCESCO C, SUN X C, ZHENG W L, KONG L, ZHANG Q, ZHANG C Y, ZHANG Q G, SERGIO B, LI L. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nat. Photonics, 2021, 15(5): 379-385  doi: 10.1038/s41566-021-00766-2

    6. [6]

      WANG X F, LIU G F, TANG C, TANG H L, ZHANG W Y, JU Z C, JIANG J M, ZHUANG Q C, CUI Y H. A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery[J]. J. Alloy. Compd., 2023, 934: 167889  doi: 10.1016/j.jallcom.2022.167889

    7. [7]

      LI Y F, LI J, ZHAI X W, LIU Y L, WANG G, YANG X D, GE G X. Double perovskite-type (NH4)3FexCo1-xF6 electrocatalyst for efficient water oxidation[J]. ACS Appl. Energ. Mater., 2022, 5(11): 13981-13989  doi: 10.1021/acsaem.2c02593

    8. [8]

      MANAKA H, MIYASHITA Y, WATANABE Y, MASUDA T. Magnetic properties of double-layer perovskite fluorides K3Ni2F7 and K3Co2F7[J]. J. Phys. Soc. Jpn., 2007, 76(8): 085003  doi: 10.1143/JPSJ.76.085003

    9. [9]

      DING F H, CHARLES N, HARADA J K, MALLIAKAS C D, ZHANG C, DOS REIS R, GRIFFITH K J, NISBET M L, ZHANG W G, HALASYAMANI P S, DRAVID V P, RONDINELLI J M, POEPPELMEIER K R. Perovskite-like K3TiOF5 exhibits (3+1)-dimensional commensurate structure induced by octahedrally coordinated stepassium ions [J]. J. Am. Chem. Soc., 2021, 143(45): 18907-18916  doi: 10.1021/jacs.1c05704

    10. [10]

      CLEMENS O. Structural characterization of a new vacancy ordered perovskite modification found for Ba3Fe3O7F (BaFeO2.333F0.333): Towards understanding of vacancy ordering for different perovskite-type ferrites[J]. J. Solid State Chem., 2015, 225: 261-270  doi: 10.1016/j.jssc.2014.12.027

    11. [11]

      BERNAL F L, YUSENKO K V, SOTTMANN J, DRATHEN C, GUIGNARD J, LOVVIK O M, CRICHTON W A, MARGADONNA S. Perovskite to postperovskite transition in NaFeF3[J]. Inorg. Chem., 2014, 53(22): 12205-12214  doi: 10.1021/ic502224y

    12. [12]

      ZHENG X, LUO H D, LIU J, LIU P J, YU X B. Sr3AlO4F∶Ce3+-based yellow phosphors: Structural tuning of optical properties and use in solid-state white lighting[J]. J. Mater. Chem. C, 2013, 1(45): 7598-7607  doi: 10.1039/c3tc31460j

    13. [13]

      ZHANG Y, YANG Y C, HOU X, YU F H, FENG Q S, DUAN B H, LU X G, LI R B, CHEN G Y, LI C H. Synthesis and structural characterization of a novel perovskite oxyfluoride BaY0.5Zr0.5O2.5F0.5[J]. Ceram. Int., 2022, 48(20): 30717-30723  doi: 10.1016/j.ceramint.2022.07.020

    14. [14]

      ZHANG R, GIBBS A S, ZHANG W, HALASYAMANI P S, HAYWARD M A. Structural modification of the cation-ordered Ruddlesden-Popper phase YSr2Mn2O7 by cation exchange and inion insertion[J]. Inorg. Chem., 2017, 56(16): 9988-9995  doi: 10.1021/acs.inorgchem.7b01525

    15. [15]

      WISSEL K, VOGEL T, DASGUPTA S, FORTES A D, SLATER P R, CLEMENS O. Topochemical fluorination of n=2 Ruddlesden-Popper type Sr3Ti2O7 to Sr3Ti2O5F4 and its reductive defluorination[J]. Inorg. Chem., 2020, 59(2): 1153-1163  doi: 10.1021/acs.inorgchem.9b02783

    16. [16]

      WISSEL K, SCHOCH R, VOGEL T, DONZELLI M, MATVEEVA G, KOLB U, BAUER M, SLATER P R, CLEMENS O. Electrochemical reduction and oxidation of Ruddlesden-Popper-type La2NiO3F2 within fluoride-ion batteries[J]. Chem. Mat., 2021, 33(2): 499-512  doi: 10.1021/acs.chemmater.0c01762

    17. [17]

      ZHANG R H, SENN M S, HAYWARD M A. Directed lifting of inversion symmetry in Ruddlesden-Popper oxide-fluorides: Toward ferroelectric and multiferroic behavior[J]. Chem. Mat., 2016, 28(22): 8399-8406  doi: 10.1021/acs.chemmater.6b03931

    18. [18]

      SLATER P R. Poly(vinylidene fluoride) as a reagent for the synthesis of K2NiF4-related inorganic oxide fluorides [J]. J. Fluor. Chem., 2002, 117: 43-45  doi: 10.1016/S0022-1139(02)00166-5

    19. [19]

      HEDVALL A. On Rinmann′s Green[J]. Reports of the German Chemical Society, 1912, 45(2): 2095-2096

    20. [20]

      YOO C Y, KIM J, KIM S C, KIM S J. Crystal structures of new layered perovskite-type oxyfluorides, CsANb2O6F (A=Sr and Ca) and comparison with pyrochlore-type CsNb2O5F[J]. J. Solid State Chem., 2018, 267: 146-152  doi: 10.1016/j.jssc.2018.08.020

    21. [21]

      WANG Y K, TANG K B, ZHU B C, WANG D K, HAO Q Y, WANG Y. Synthesis and structure of a new layered oxyfluoride Sr2ScO3F with photocatalytic property[J]. Mater. Res. Bull., 2015, 65: 42-46  doi: 10.1016/j.materresbull.2015.01.042

    22. [22]

      V′YUNOV O I, BELOUS A G, KOVALENKO L L, ZINCHENKO V F, TIMUKHIN E V. Effect of fluorine doping on the microstructure and electrical properties of barium-titanate-based ceramics[J]. Inorg. Mater., 2007, 43(12): 1330-1335  doi: 10.1134/S0020168507120151

    23. [23]

      TSUJIMOTO Y, YAMAURA K, UCHIKOSHI T. Extended Ni(Ⅲ) oxyhalide perovskite derivatives: Sr2NiO3X (X=F, Cl)[J]. Inorg. Chem., 2013, 52(17): 10211-10216  doi: 10.1021/ic402008n

    24. [24]

      TARASOVA N, ANIMITSA I. Novel proton-conducting oxyfluorides Ba4-0.5xIn2Zr2O11-xFx with perovskite structure[J]. Solid State Ion., 2014, 264: 69-75  doi: 10.1016/j.ssi.2014.06.021

    25. [25]

      FUJII S, GAO S, TASSEL C, ZHU T, BROUX T, OKADA K, MIYAHARA Y, KUWABARA A, KAGEYAMA H. Alkali-Rich Antiperovskite M3FCh (M=Li, Na; Ch=S, Se, Te): The role of anions in phase stability and ionic transport[J]. J. Am. Chem. Soc., 2021, 143(28): 10668-10675  doi: 10.1021/jacs.1c04260

    26. [26]

      NAKAGAWA T, VRANKIĆ M, MENELAOU M, SEREIKA R, WANG D, ZHANG J B, ISHII H, HIRAOKA N, DING Y. Pressure-induced valence fluctuation in CsEuF3: From divalent Eu valence to trivalent Eu valence state[J]. J. Phys. Chem. Solids, 2023, 175: 111202  doi: 10.1016/j.jpcs.2022.111202

    27. [27]

      STOUMPOS C C, MAO L, MALLIAKAS C D, KANATZIDIS M G. Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites[J]. Inorg. Chem., 2017, 56(1): 56-73  doi: 10.1021/acs.inorgchem.6b02764

    28. [28]

      WANG Z, JING Q, ZHANG M, DONG X Y, PAN S L, YANG Z H. A new 12L-hexagonal perovskite Cs4Mg3CaF12: Structural transition derived from the partial substitution of Mg2+ with Ca2+[J]. RSC Adv., 2014, 4(97): 54194-54198  doi: 10.1039/C4RA07819E

    29. [29]

      TAKEIRI F, YAMAMOTO T, HAYASHI N, HOSOKAWA S, ARAI K, KIKKAWA J, IKEDA K, HONDA T, OTOMO T, TASSEL C, KIMOTO K, KAGEYAMA H. AgFeOF2: A fluorine-rich perovskite oxyfluoride[J]. Inorg. Chem., 2018, 57(11): 6686-6691  doi: 10.1021/acs.inorgchem.8b00500

    30. [30]

      SULLIVAN E, GREAVES C. Fluorine insertion reactions of the brownmillerite materials Sr2Fe2O5, Sr2CoFeO5, and Sr2Co2O5[J]. Mater. Res. Bull., 2012, 47(9): 2541-2546  doi: 10.1016/j.materresbull.2012.05.002

    31. [31]

      EL SHINAWI H, MARCO J F, BERRY F J, GREAVES C. LaSrCoFeO5, LaSrCoFeO5F and LaSrCoFeO5.5: New La-Sr-Co-Fe perovskites[J]. J. Mater. Chem., 2010, 20(16): 3253-3259  doi: 10.1039/b927141d

    32. [32]

      SARATOVSKY I, LOCKETT M A, REES N H, HAYWARD M A. Preparation of Sr7Mn4O13F2 by the tostepactic reduction and subsequent fluorination of Sr7Mn4O15[J]. Inorg. Chem., 2008, 47: 5212-5217  doi: 10.1021/ic800066g

    33. [33]

      WISSEL K, HELDT J, GROSZEWICZ P B, DASGUPTA S, BREITZKE H, DONZELLI M, WAIDHA A I, FORTES A D, ROHRER J, SLATER P R, BUNTKOWSKY G, CLEMENS O. Topochemical fluorination of La2NiO4+d: Unprecedented ordering of oxide and fluoride ions in La2NiO3F2[J]. Inorg. Chem., 2018, 57(11): 6549-6560  doi: 10.1021/acs.inorgchem.8b00661

    34. [34]

      TSUJIMOTO Y, YAMAURA K, HAYASHI N, KODAMA K, IGAWA N, MATSUSHITA Y, KATSUYA Y, SHIRAKO Y, AKAOGI M, TAKAYAMA-MUROMACHI E. Tostepactic synthesis and crystal structure of a highly fluorinated Ruddlesden-Popper-type iron oxide, Sr3Fe2O5+xF2-x (x≈0.44)[J]. Chem. Mat., 2011, 23(16): 3652-3658  doi: 10.1021/cm201075g

    35. [35]

      GALASSO F, DARBY W. Preparation, structure, and properties of K2NbO3F[J]. J. Phys. Chem., 1962, 66: 1318-1320  doi: 10.1021/j100813a025

    36. [36]

      CHOY J H, KIM J Y, KIM S J, SOHN J S. New Dion-Jacobson-type layered perovskite oxfluorides, ASrNb2O6F (A=Li, Na, and Rb)[J]. Chem. Mat., 2001, 13: 906-912  doi: 10.1021/cm000673g

    37. [37]

      NEEDS R L, DANN S E, WELLER M T, CHERRYMAN J C, HARRIS R K. The structure and oxide/fluoride ordering of the ferroelectrics Bi2TiO4F2 and Bi2NbO5F[J]. J. Mater. Chem., 2005, 15(24): 2399-2407  doi: 10.1039/b502499d

    38. [38]

      MCCABE E E, JONES I P, ZHANG D, HYATT N C, GREAVES C. Crystal structure and electrical characterisation of Bi2NbO5F: An aurivillius oxide fluoride[J]. J. Mater. Chem., 2007, 17(12): 1193-1200  doi: 10.1039/b613970a

    39. [39]

      LI R K, GREAVES C. Double-layered ruthenate Sr3Ru2O7F2 formed by fluorine insertion into Sr3Ru2O7[J]. Phys. Rev. B, 2000, 62(6): 3811-3815  doi: 10.1103/PhysRevB.62.3811

    40. [40]

      BAIKIE T, ISLAM M S, FRANCESCONI M G. Defects in the new oxide-fluoride Ba2PdO2F2: The search for fluoride needles in an oxide haystack[J]. J. Mater. Chem., 2005, 15(1): 119-123  doi: 10.1039/b416330c

    41. [41]

      BAIKIE T, DIXON E L, ROOMS J F, YOUNG N A, FRANCESCONI M G. Ba2-xSrxPdO2F2 (0≤x≤1.5): The first palladium-oxide-fluorides[J]. Chem. Commun., 2003, 13: 1580-1581

    42. [42]

      AIKENS L D, GILLIE L J, LI R K, GREAVES C. Staged fluorine insertion into manganese oxides with Ruddlesden-Popper structures: LaSrMnO4F and La1.2Sr1.8Mn2O7F[J]. J. Mater. Chem., 2002, 12(2): 264-267  doi: 10.1039/b105550j

    43. [43]

      SLATER P R, GOVER R K B. Synthesis and structure of the new oxide fluoride Ba2ZrO3F2·xH2O (x≈0.5)[J]. J. Mater. Chem., 2001, 11(8): 2035-2038  doi: 10.1039/b103891p

    44. [44]

      SLATER P R, GOVER R K B. Synthesis and structure of the new oxide fluoride Sr2TiO3F2 from the low temperature fluorination of Sr2TiO4: An example of a staged fluorine substitution/insertion reaction [J]. J. Mater. Chem., 2002, 12(2): 291-294  doi: 10.1039/b106574m

    45. [45]

      GREAVES C, KISSICK J L, FRANCESCONI M G, AIKENS L D, GILLIE L J. Synthetic strategies for new inorganic oxide fluorides and oxide sulfates[J]. J. Mater. Chem., 1999, 9: 111-116  doi: 10.1039/a804447c

    46. [46]

      CASE G S, HECTORA L, LEVASON W, NEEDS R L, THOMASA M F, WELLER M T. Syntheses, powder neutron diffraction structures and Mössbauer studies of some complex iron oxyfluorides: Sr3Fe2O6F0.87, Sr2FeO3F and Ba2InFeO5F0.68[J]. J. Mater. Chem., 1999, 9: 2821-2827  doi: 10.1039/a905730g

    47. [47]

      SINGH P, RAWAT P, NAGARAJAN R. Mechanochemical synthesis of layered perovskite structured fluorides A2MF4 (A=K, Rb; M=Co, Cu, Mg) and their transformation to AMF3 phase by mechanical activation[J]. J. Fluor. Chem., 2014, 165: 43-48  doi: 10.1016/j.jfluchem.2014.06.009

    48. [48]

      DÜVEL A, WILKENING M, WEGNER S, FELDHOFF A, ŠEPELÁK V, HEITJANS P. Ion conduction and dynamics in mechanosynthesized nanocrystalline BaLiF3[J]. Solid State Ion., 2011, 184(1): 65-69  doi: 10.1016/j.ssi.2010.08.025

    49. [49]

      LEE J Y, SHIN H Y, LEE J H, CHUNG H S, ZHANG Q W, SAITO F. Mechanochemical syntheses of perovskite KMF3 with cubic structure (M=Mg, Ca, Mn, Fe, Co, Ni, and Zn)[J]. Mater. Trans., 2003, 44(7): 1457-1460  doi: 10.2320/matertrans.44.1457

    50. [50]

      BLAKELY C K, BRUNO S R, KRAEMER S K, ABAKUMOV A M, POLTAVETS V V. Low-temperature solvothermal fluorination method and synthesis of La4Ni3O8Fx oxyfluorides via the La4Ni3O8 infinite-layer intermediate[J]. J. Solid State Chem., 2020, 289: 121490  doi: 10.1016/j.jssc.2020.121490

    51. [51]

      SAROJ S K, RAWAT P, GUPTA M, VIJAYA P G, NAGARAJAN R. Double perovskite K3InF6 as an upconversion phosphor and its structural transformation through rubidium substitution[J]. Eur. J. Inorg. Chem., 2018, 44: 4826-4833

    52. [52]

      ZHU G X, XIE M B, PAN R K, ZHOU X P. Solvothermal fabrication and luminescent properties of Eu2+/Gd3+ doped stepassium magnesium fluoride [J]. J. Fluor. Chem., 2016, 188: 28-32  doi: 10.1016/j.jfluchem.2016.05.012

    53. [53]

      RISSOM C, SCHMIDT H, VOIGT W. Crystal structure and thermal properties of a new double salt: K2SiF6·KNO3[J]. Cryst. Res. Technol., 2007, 43(1): 74-82

    54. [54]

      RAWAT P, KUMAR SAROJ S, GUPTA M, VIJAYA P G, NAGARAJAN R. Wet-chemical synthesis, structural characterization and optical properties of rare-earth doped halo perovskite K3GaF6[J]. J. Fluor. Chem., 2017, 200: 1-7  doi: 10.1016/j.jfluchem.2017.05.008

    55. [55]

      MATSUO Y, MATSUKAWA Y, KITAKADO M, HASEGAWA G, YOSHIDA S, KUBONAKA R, YOSHIDA Y, KAWASAKI T, KOBAYASHI E, MORIYOSHI C, OHNO S, FUJITA K, HAYASHI K, AKAMATSU H. Topochemical synthesis of LiCoF3 with a high-temperature LiNbO3-type structure[J]. Inorg. Chem., 2022, 61(30): 11746-11756  doi: 10.1021/acs.inorgchem.2c01439

    56. [56]

      WANG T, CHEN H, YANG Z Z, LIANG J Y, DAI S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis[J]. J. Am. Chem. Soc., 2020, 142(10): 4550-4554  doi: 10.1021/jacs.9b12377

    57. [57]

      ZHAO C Y, FENG S H, CHAO Z C, SHI C S, XU R R, NI J Z. Hydrothermal synthesis of the complex fluorides LiBaF3 and KMgF3 with perovskite structures under mild conditions[J]. Chem. Commun., 1996, 14: 1641-1642

    58. [58]

      HE L J, YUAN H M, HUANG K K, YAN C, LI G H, HE Q R, YU Y, FENG S H. Hydrothermal syntheses, structures, and magnetic properties of (NH4)2NaVF6 and Na3VF6[J]. J. Solid State Chem., 2009, 182(8): 2208-2212  doi: 10.1016/j.jssc.2009.03.024

    59. [59]

      KIM S W, ZHANG R, HALASYAMANI P S, HAYWARD M A. K4Fe3F12: An Fe(2+)/Fe(3+) charge-ordered, ferrimagnetic fluoride with a cation-deficient, layered perovskite structure[J]. Inorg. Chem., 2015, 54(13): 6647-6652  doi: 10.1021/acs.inorgchem.5b01006

    60. [60]

      CACIUFFO R, PAOLASINI L, SOLLIER A, GHIGNA P, PAVARINI E, BRINK J V D, ALTARELLI M. Resonant X-ray scattering study of magnetic and orbital order in KCuF3[J]. Phys. Rev. B, 2002, 65(17): 174425  doi: 10.1103/PhysRevB.65.174425

    61. [61]

      WIEDEMANN D, MEUTZNER F, FABELO O, GANSCHOW S. The inverse perovskite BaLiF3: Single-crystal neutron diffraction and analyses of stepential ion pathways[J]. Acta Crystallogr. Sect. B‒Struct. Sci. Cryst. Eng. Mat., 2018, 74(6): 643-650  doi: 10.1107/S2052520618014579

    62. [62]

      LIU L L, YANG Y, JING Q, DONG X Y, YANG Z H, PAN S L, WU K. K5Ba10(BO3)8F: A new stepassium barium borate fluoride with a perovskite-like structure[J]. J. Phys. Chem. C, 2016, 120(33): 18763-18770  doi: 10.1021/acs.jpcc.6b05489

    63. [63]

      CONRAD M, PIETZONKA C, BERNZEN J, MOTTA V, WEITZEL K M, KARTTUNEN A J, KRAUS F. The fluoroperovskite TlMnF3[J]. Z. Anorg. Allg. Chem., 2018, 644(22): 1557-1561  doi: 10.1002/zaac.201800305

    64. [64]

      ZHANG M, WANG Z H, MO M S, CHEN X Y, ZHANG R, YU W C, QIAN Y T. A simple approach to synthesize KNiF3 hollow spheres by solvothermal method[J]. Mater. Chem. Phys., 2005, 89(2/3): 373-378

    65. [65]

      CHUN J Y, JO C S, LIM E H, ROH K C, LEE J W. Solvothermal synthesis of sodium cobalt fluoride (NaCoF3) nanoparticle clusters[J]. Mater. Lett., 2017, 207: 89-92  doi: 10.1016/j.matlet.2017.07.059

    66. [66]

      HANABATA S, KUSADA K, YAMAMOTO T, TORIYAMA T, MATSUMURA S, KAWAGUCHI S, KUBOTA Y, NISHIDA Y, HANEDA M, KITAGAWA H. Denary high-entropy oxide nanoparticles synthesized by a continuous supercritical hydrothermal flow process[J]. J. Am. Chem. Soc., 2024, 146(1): 181-186  doi: 10.1021/jacs.3c07351

    67. [67]

      ZHANG X Y, LIU X D, HE M J, ZHANG Y C, SUN Y C, LU X C. A molecular dynamics simulation study of KF and NaF ion pairs in hydrothermal fluids[J]. Fluid Phase Equilib., 2020, 518(S1): 112625

    68. [68]

      FEDOTOVA M V, GAVRILOVA E L. Structural parameters of aqueous solutions of stepassium fluoride under hydrothermal conditions[J]. Russ. J. Gen. Chem., 2009, 79(1): 7-15  doi: 10.1134/S1070363209010022

    69. [69]

      YAMADA Y, DOI T, TANAKA I, OKADA S, YAMAKI J I. Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries[J]. J. Power Sources, 2011, 196(10): 4837-4841  doi: 10.1016/j.jpowsour.2011.01.060

    70. [70]

      SIEBENEICHLER S, DORN K V, SMETANA V, VALLDOR M, MUDRING A V. A soft chemistry approach to the synthesis of single crystalline and highly pure (NH4)CoF3 for optical and magnetic investigations[J]. J. Chem. Phys., 2020, 153(10): 104501  doi: 10.1063/5.0023343

    71. [71]

      HU R S, LI C, WANG X, ZHOU T T, YANG X Z, GAO G J, ZHANG Y L. Synthesis of perovskite KMgF3 with microemulsion for photocatalytic removal of various pollutants under visible light[J]. Catal. Commun., 2013, 40: 71-75  doi: 10.1016/j.catcom.2013.06.007

    72. [72]

      WU J, WANG B, LIU Z Y, ZHANG K, LI X S, HUANG J H, LIU P F, ZENG Q G. A novel Mn4+-activated layered oxide-fluoride perovskite-type KNaMoO2F4 red phosphor for wide gamut warm white light-emitting diode backlights[J]. Dalton Trans., 2021, 50(32): 11189-11196  doi: 10.1039/D1DT01863A

    73. [73]

      LIU Y, HUANG A Q, YANG S C, DUAN Z J, LI Z G, LI Z T, LAN H, PENG A Z, WEN X D, WANG Z L. Synthesis and optical properties of a new double-perovskite Rb2KInF6∶Mn4+ red phosphor used for blue LED pumped white lighting[J]. Opt. Mater., 2022, 127: 112307  doi: 10.1016/j.optmat.2022.112307

    74. [74]

      MOON E J, XIE Y J, LAIRD E D, KEAVNEY D J, LI C Y, MAY S J. Fluorination of epitaxial oxides: Synthesis of perovskite oxyfluoride thin films[J]. J. Am. Chem. Soc., 2014, 136: 2224-2227  doi: 10.1021/ja410954z

    75. [75]

      WANG C, NIE R M, DAI Y M, TAI H Y, ZHU B J, ZHAO L Y, WU Y, GUO W L, SEOK S. Enhancing the inherent stability of perovskite solar cells through chalcogenide-halide combinations[J]. Energy Environ. Sci., 2024, 17(4): 1368-1386  doi: 10.1039/D3EE03612J

    76. [76]

      RAJ R, SINGH R, GUIN M. Chalcogenide perovskite, an emerging photovoltaic material: Current status and future perspectives [J]. ChemistrySelect, 2023, 8(45): e202303550  doi: 10.1002/slct.202303550

    77. [77]

      ADJOGRI S J, MEYER E L. Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: A study of their properties, and stepential photovoltaic applications[J]. Materials, 2021, 14(24): 7857  doi: 10.3390/ma14247857

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    6. [6]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    11. [11]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    12. [12]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    13. [13]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

Metrics
  • PDF Downloads(1)
  • Abstract views(181)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return