Research progress in the synthesis of fluorine-containing perovskites and their derivatives
- Corresponding author: Liping LI, lipingli@jlu.edu.cn Guangshe LI, guangshe@jlu.edu.cn
Citation:
Lixing ZHANG, Yaowen WANG, Xu HAN, Junhong ZHOU, Jinghui WANG, Liping LI, Guangshe LI. Research progress in the synthesis of fluorine-containing perovskites and their derivatives[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1689-1701.
doi:
10.11862/CJIC.20250007
CHU X B, YE Q F, WANG Z H, ZHANG C, MA F, QU Z H, ZHAO Y, YIN Z G, DENG H X, ZHANG X W, YOU J B. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency[J]. Nat. Energy, 2023, 8(4): 372-380
doi: 10.1038/s41560-023-01220-z
KISSICK J L, GREAVES C, EDWARDS P P, CHERKASHENKO V M, KURMAEV E Z, BARTKOWSKI S, NEUMANN M. Synthesis, structure, and XPS characterization of the stoichiometric phase Sr2CuO2F[J]. Phys. Rev. B, 1997, 56(5): 2831-2835
doi: 10.1103/PhysRevB.56.2831
JIA Z Y, SHI W, DING R, YU W J, LI Y, TAN C N, SUN X J, LIU E H. Conversion-type NiCoMn triple perovskite fluorides for advanced aqueous supercapacitors, batteries and supercapatteries[J]. Chem. Commun., 2021, 57(64): 7962-7965
doi: 10.1039/D1CC02488D
ZHANG J, YE Y, WANG Z B, XU Y, GUI L Q, HE B B, ZHAO L. Probing dynamic self-reconstruction on perovskite fluorides toward ultrafast oxygen evolution[J]. Adv. Sci., 2022, 9(27): e2201916
doi: 10.1002/advs.202201916
LIU M M, WAN Q, WANG H M, FRANCESCO C, SUN X C, ZHENG W L, KONG L, ZHANG Q, ZHANG C Y, ZHANG Q G, SERGIO B, LI L. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nat. Photonics, 2021, 15(5): 379-385
doi: 10.1038/s41566-021-00766-2
WANG X F, LIU G F, TANG C, TANG H L, ZHANG W Y, JU Z C, JIANG J M, ZHUANG Q C, CUI Y H. A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery[J]. J. Alloy. Compd., 2023, 934: 167889
doi: 10.1016/j.jallcom.2022.167889
LI Y F, LI J, ZHAI X W, LIU Y L, WANG G, YANG X D, GE G X. Double perovskite-type (NH4)3FexCo1-xF6 electrocatalyst for efficient water oxidation[J]. ACS Appl. Energ. Mater., 2022, 5(11): 13981-13989
doi: 10.1021/acsaem.2c02593
MANAKA H, MIYASHITA Y, WATANABE Y, MASUDA T. Magnetic properties of double-layer perovskite fluorides K3Ni2F7 and K3Co2F7[J]. J. Phys. Soc. Jpn., 2007, 76(8): 085003
doi: 10.1143/JPSJ.76.085003
DING F H, CHARLES N, HARADA J K, MALLIAKAS C D, ZHANG C, DOS REIS R, GRIFFITH K J, NISBET M L, ZHANG W G, HALASYAMANI P S, DRAVID V P, RONDINELLI J M, POEPPELMEIER K R. Perovskite-like K3TiOF5 exhibits (3+1)-dimensional commensurate structure induced by octahedrally coordinated stepassium ions [J]. J. Am. Chem. Soc., 2021, 143(45): 18907-18916
doi: 10.1021/jacs.1c05704
CLEMENS O. Structural characterization of a new vacancy ordered perovskite modification found for Ba3Fe3O7F (BaFeO2.333F0.333): Towards understanding of vacancy ordering for different perovskite-type ferrites[J]. J. Solid State Chem., 2015, 225: 261-270
doi: 10.1016/j.jssc.2014.12.027
BERNAL F L, YUSENKO K V, SOTTMANN J, DRATHEN C, GUIGNARD J, LOVVIK O M, CRICHTON W A, MARGADONNA S. Perovskite to postperovskite transition in NaFeF3[J]. Inorg. Chem., 2014, 53(22): 12205-12214
doi: 10.1021/ic502224y
ZHENG X, LUO H D, LIU J, LIU P J, YU X B. Sr3AlO4F∶Ce3+-based yellow phosphors: Structural tuning of optical properties and use in solid-state white lighting[J]. J. Mater. Chem. C, 2013, 1(45): 7598-7607
doi: 10.1039/c3tc31460j
ZHANG Y, YANG Y C, HOU X, YU F H, FENG Q S, DUAN B H, LU X G, LI R B, CHEN G Y, LI C H. Synthesis and structural characterization of a novel perovskite oxyfluoride BaY0.5Zr0.5O2.5F0.5[J]. Ceram. Int., 2022, 48(20): 30717-30723
doi: 10.1016/j.ceramint.2022.07.020
ZHANG R, GIBBS A S, ZHANG W, HALASYAMANI P S, HAYWARD M A. Structural modification of the cation-ordered Ruddlesden-Popper phase YSr2Mn2O7 by cation exchange and inion insertion[J]. Inorg. Chem., 2017, 56(16): 9988-9995
doi: 10.1021/acs.inorgchem.7b01525
WISSEL K, VOGEL T, DASGUPTA S, FORTES A D, SLATER P R, CLEMENS O. Topochemical fluorination of n=2 Ruddlesden-Popper type Sr3Ti2O7 to Sr3Ti2O5F4 and its reductive defluorination[J]. Inorg. Chem., 2020, 59(2): 1153-1163
doi: 10.1021/acs.inorgchem.9b02783
WISSEL K, SCHOCH R, VOGEL T, DONZELLI M, MATVEEVA G, KOLB U, BAUER M, SLATER P R, CLEMENS O. Electrochemical reduction and oxidation of Ruddlesden-Popper-type La2NiO3F2 within fluoride-ion batteries[J]. Chem. Mat., 2021, 33(2): 499-512
doi: 10.1021/acs.chemmater.0c01762
ZHANG R H, SENN M S, HAYWARD M A. Directed lifting of inversion symmetry in Ruddlesden-Popper oxide-fluorides: Toward ferroelectric and multiferroic behavior[J]. Chem. Mat., 2016, 28(22): 8399-8406
doi: 10.1021/acs.chemmater.6b03931
SLATER P R. Poly(vinylidene fluoride) as a reagent for the synthesis of K2NiF4-related inorganic oxide fluorides [J]. J. Fluor. Chem., 2002, 117: 43-45
doi: 10.1016/S0022-1139(02)00166-5
HEDVALL A. On Rinmann′s Green[J]. Reports of the German Chemical Society, 1912, 45(2): 2095-2096
YOO C Y, KIM J, KIM S C, KIM S J. Crystal structures of new layered perovskite-type oxyfluorides, CsANb2O6F (A=Sr and Ca) and comparison with pyrochlore-type CsNb2O5F[J]. J. Solid State Chem., 2018, 267: 146-152
doi: 10.1016/j.jssc.2018.08.020
WANG Y K, TANG K B, ZHU B C, WANG D K, HAO Q Y, WANG Y. Synthesis and structure of a new layered oxyfluoride Sr2ScO3F with photocatalytic property[J]. Mater. Res. Bull., 2015, 65: 42-46
doi: 10.1016/j.materresbull.2015.01.042
V′YUNOV O I, BELOUS A G, KOVALENKO L L, ZINCHENKO V F, TIMUKHIN E V. Effect of fluorine doping on the microstructure and electrical properties of barium-titanate-based ceramics[J]. Inorg. Mater., 2007, 43(12): 1330-1335
doi: 10.1134/S0020168507120151
TSUJIMOTO Y, YAMAURA K, UCHIKOSHI T. Extended Ni(Ⅲ) oxyhalide perovskite derivatives: Sr2NiO3X (X=F, Cl)[J]. Inorg. Chem., 2013, 52(17): 10211-10216
doi: 10.1021/ic402008n
TARASOVA N, ANIMITSA I. Novel proton-conducting oxyfluorides Ba4-0.5xIn2Zr2O11-xFx with perovskite structure[J]. Solid State Ion., 2014, 264: 69-75
doi: 10.1016/j.ssi.2014.06.021
FUJII S, GAO S, TASSEL C, ZHU T, BROUX T, OKADA K, MIYAHARA Y, KUWABARA A, KAGEYAMA H. Alkali-Rich Antiperovskite M3FCh (M=Li, Na; Ch=S, Se, Te): The role of anions in phase stability and ionic transport[J]. J. Am. Chem. Soc., 2021, 143(28): 10668-10675
doi: 10.1021/jacs.1c04260
NAKAGAWA T, VRANKIĆ M, MENELAOU M, SEREIKA R, WANG D, ZHANG J B, ISHII H, HIRAOKA N, DING Y. Pressure-induced valence fluctuation in CsEuF3: From divalent Eu valence to trivalent Eu valence state[J]. J. Phys. Chem. Solids, 2023, 175: 111202
doi: 10.1016/j.jpcs.2022.111202
STOUMPOS C C, MAO L, MALLIAKAS C D, KANATZIDIS M G. Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites[J]. Inorg. Chem., 2017, 56(1): 56-73
doi: 10.1021/acs.inorgchem.6b02764
WANG Z, JING Q, ZHANG M, DONG X Y, PAN S L, YANG Z H. A new 12L-hexagonal perovskite Cs4Mg3CaF12: Structural transition derived from the partial substitution of Mg2+ with Ca2+[J]. RSC Adv., 2014, 4(97): 54194-54198
doi: 10.1039/C4RA07819E
TAKEIRI F, YAMAMOTO T, HAYASHI N, HOSOKAWA S, ARAI K, KIKKAWA J, IKEDA K, HONDA T, OTOMO T, TASSEL C, KIMOTO K, KAGEYAMA H. AgFeOF2: A fluorine-rich perovskite oxyfluoride[J]. Inorg. Chem., 2018, 57(11): 6686-6691
doi: 10.1021/acs.inorgchem.8b00500
SULLIVAN E, GREAVES C. Fluorine insertion reactions of the brownmillerite materials Sr2Fe2O5, Sr2CoFeO5, and Sr2Co2O5[J]. Mater. Res. Bull., 2012, 47(9): 2541-2546
doi: 10.1016/j.materresbull.2012.05.002
EL SHINAWI H, MARCO J F, BERRY F J, GREAVES C. LaSrCoFeO5, LaSrCoFeO5F and LaSrCoFeO5.5: New La-Sr-Co-Fe perovskites[J]. J. Mater. Chem., 2010, 20(16): 3253-3259
doi: 10.1039/b927141d
SARATOVSKY I, LOCKETT M A, REES N H, HAYWARD M A. Preparation of Sr7Mn4O13F2 by the tostepactic reduction and subsequent fluorination of Sr7Mn4O15[J]. Inorg. Chem., 2008, 47: 5212-5217
doi: 10.1021/ic800066g
WISSEL K, HELDT J, GROSZEWICZ P B, DASGUPTA S, BREITZKE H, DONZELLI M, WAIDHA A I, FORTES A D, ROHRER J, SLATER P R, BUNTKOWSKY G, CLEMENS O. Topochemical fluorination of La2NiO4+d: Unprecedented ordering of oxide and fluoride ions in La2NiO3F2[J]. Inorg. Chem., 2018, 57(11): 6549-6560
doi: 10.1021/acs.inorgchem.8b00661
TSUJIMOTO Y, YAMAURA K, HAYASHI N, KODAMA K, IGAWA N, MATSUSHITA Y, KATSUYA Y, SHIRAKO Y, AKAOGI M, TAKAYAMA-MUROMACHI E. Tostepactic synthesis and crystal structure of a highly fluorinated Ruddlesden-Popper-type iron oxide, Sr3Fe2O5+xF2-x (x≈0.44)[J]. Chem. Mat., 2011, 23(16): 3652-3658
doi: 10.1021/cm201075g
GALASSO F, DARBY W. Preparation, structure, and properties of K2NbO3F[J]. J. Phys. Chem., 1962, 66: 1318-1320
doi: 10.1021/j100813a025
CHOY J H, KIM J Y, KIM S J, SOHN J S. New Dion-Jacobson-type layered perovskite oxfluorides, ASrNb2O6F (A=Li, Na, and Rb)[J]. Chem. Mat., 2001, 13: 906-912
doi: 10.1021/cm000673g
NEEDS R L, DANN S E, WELLER M T, CHERRYMAN J C, HARRIS R K. The structure and oxide/fluoride ordering of the ferroelectrics Bi2TiO4F2 and Bi2NbO5F[J]. J. Mater. Chem., 2005, 15(24): 2399-2407
doi: 10.1039/b502499d
MCCABE E E, JONES I P, ZHANG D, HYATT N C, GREAVES C. Crystal structure and electrical characterisation of Bi2NbO5F: An aurivillius oxide fluoride[J]. J. Mater. Chem., 2007, 17(12): 1193-1200
doi: 10.1039/b613970a
LI R K, GREAVES C. Double-layered ruthenate Sr3Ru2O7F2 formed by fluorine insertion into Sr3Ru2O7[J]. Phys. Rev. B, 2000, 62(6): 3811-3815
doi: 10.1103/PhysRevB.62.3811
BAIKIE T, ISLAM M S, FRANCESCONI M G. Defects in the new oxide-fluoride Ba2PdO2F2: The search for fluoride needles in an oxide haystack[J]. J. Mater. Chem., 2005, 15(1): 119-123
doi: 10.1039/b416330c
BAIKIE T, DIXON E L, ROOMS J F, YOUNG N A, FRANCESCONI M G. Ba2-xSrxPdO2F2 (0≤x≤1.5): The first palladium-oxide-fluorides[J]. Chem. Commun., 2003, 13: 1580-1581
AIKENS L D, GILLIE L J, LI R K, GREAVES C. Staged fluorine insertion into manganese oxides with Ruddlesden-Popper structures: LaSrMnO4F and La1.2Sr1.8Mn2O7F[J]. J. Mater. Chem., 2002, 12(2): 264-267
doi: 10.1039/b105550j
SLATER P R, GOVER R K B. Synthesis and structure of the new oxide fluoride Ba2ZrO3F2·xH2O (x≈0.5)[J]. J. Mater. Chem., 2001, 11(8): 2035-2038
doi: 10.1039/b103891p
SLATER P R, GOVER R K B. Synthesis and structure of the new oxide fluoride Sr2TiO3F2 from the low temperature fluorination of Sr2TiO4: An example of a staged fluorine substitution/insertion reaction [J]. J. Mater. Chem., 2002, 12(2): 291-294
doi: 10.1039/b106574m
GREAVES C, KISSICK J L, FRANCESCONI M G, AIKENS L D, GILLIE L J. Synthetic strategies for new inorganic oxide fluorides and oxide sulfates[J]. J. Mater. Chem., 1999, 9: 111-116
doi: 10.1039/a804447c
CASE G S, HECTORA L, LEVASON W, NEEDS R L, THOMASA M F, WELLER M T. Syntheses, powder neutron diffraction structures and Mössbauer studies of some complex iron oxyfluorides: Sr3Fe2O6F0.87, Sr2FeO3F and Ba2InFeO5F0.68[J]. J. Mater. Chem., 1999, 9: 2821-2827
doi: 10.1039/a905730g
SINGH P, RAWAT P, NAGARAJAN R. Mechanochemical synthesis of layered perovskite structured fluorides A2MF4 (A=K, Rb; M=Co, Cu, Mg) and their transformation to AMF3 phase by mechanical activation[J]. J. Fluor. Chem., 2014, 165: 43-48
doi: 10.1016/j.jfluchem.2014.06.009
DÜVEL A, WILKENING M, WEGNER S, FELDHOFF A, ŠEPELÁK V, HEITJANS P. Ion conduction and dynamics in mechanosynthesized nanocrystalline BaLiF3[J]. Solid State Ion., 2011, 184(1): 65-69
doi: 10.1016/j.ssi.2010.08.025
LEE J Y, SHIN H Y, LEE J H, CHUNG H S, ZHANG Q W, SAITO F. Mechanochemical syntheses of perovskite KMⅡF3 with cubic structure (MⅡ=Mg, Ca, Mn, Fe, Co, Ni, and Zn)[J]. Mater. Trans., 2003, 44(7): 1457-1460
doi: 10.2320/matertrans.44.1457
BLAKELY C K, BRUNO S R, KRAEMER S K, ABAKUMOV A M, POLTAVETS V V. Low-temperature solvothermal fluorination method and synthesis of La4Ni3O8Fx oxyfluorides via the La4Ni3O8 infinite-layer intermediate[J]. J. Solid State Chem., 2020, 289: 121490
doi: 10.1016/j.jssc.2020.121490
SAROJ S K, RAWAT P, GUPTA M, VIJAYA P G, NAGARAJAN R. Double perovskite K3InF6 as an upconversion phosphor and its structural transformation through rubidium substitution[J]. Eur. J. Inorg. Chem., 2018, 44: 4826-4833
ZHU G X, XIE M B, PAN R K, ZHOU X P. Solvothermal fabrication and luminescent properties of Eu2+/Gd3+ doped stepassium magnesium fluoride [J]. J. Fluor. Chem., 2016, 188: 28-32
doi: 10.1016/j.jfluchem.2016.05.012
RISSOM C, SCHMIDT H, VOIGT W. Crystal structure and thermal properties of a new double salt: K2SiF6·KNO3[J]. Cryst. Res. Technol., 2007, 43(1): 74-82
RAWAT P, KUMAR SAROJ S, GUPTA M, VIJAYA P G, NAGARAJAN R. Wet-chemical synthesis, structural characterization and optical properties of rare-earth doped halo perovskite K3GaF6[J]. J. Fluor. Chem., 2017, 200: 1-7
doi: 10.1016/j.jfluchem.2017.05.008
MATSUO Y, MATSUKAWA Y, KITAKADO M, HASEGAWA G, YOSHIDA S, KUBONAKA R, YOSHIDA Y, KAWASAKI T, KOBAYASHI E, MORIYOSHI C, OHNO S, FUJITA K, HAYASHI K, AKAMATSU H. Topochemical synthesis of LiCoF3 with a high-temperature LiNbO3-type structure[J]. Inorg. Chem., 2022, 61(30): 11746-11756
doi: 10.1021/acs.inorgchem.2c01439
WANG T, CHEN H, YANG Z Z, LIANG J Y, DAI S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis[J]. J. Am. Chem. Soc., 2020, 142(10): 4550-4554
doi: 10.1021/jacs.9b12377
ZHAO C Y, FENG S H, CHAO Z C, SHI C S, XU R R, NI J Z. Hydrothermal synthesis of the complex fluorides LiBaF3 and KMgF3 with perovskite structures under mild conditions[J]. Chem. Commun., 1996, 14: 1641-1642
HE L J, YUAN H M, HUANG K K, YAN C, LI G H, HE Q R, YU Y, FENG S H. Hydrothermal syntheses, structures, and magnetic properties of (NH4)2NaVF6 and Na3VF6[J]. J. Solid State Chem., 2009, 182(8): 2208-2212
doi: 10.1016/j.jssc.2009.03.024
KIM S W, ZHANG R, HALASYAMANI P S, HAYWARD M A. K4Fe3F12: An Fe(2+)/Fe(3+) charge-ordered, ferrimagnetic fluoride with a cation-deficient, layered perovskite structure[J]. Inorg. Chem., 2015, 54(13): 6647-6652
doi: 10.1021/acs.inorgchem.5b01006
CACIUFFO R, PAOLASINI L, SOLLIER A, GHIGNA P, PAVARINI E, BRINK J V D, ALTARELLI M. Resonant X-ray scattering study of magnetic and orbital order in KCuF3[J]. Phys. Rev. B, 2002, 65(17): 174425
doi: 10.1103/PhysRevB.65.174425
WIEDEMANN D, MEUTZNER F, FABELO O, GANSCHOW S. The inverse perovskite BaLiF3: Single-crystal neutron diffraction and analyses of stepential ion pathways[J]. Acta Crystallogr. Sect. B‒Struct. Sci. Cryst. Eng. Mat., 2018, 74(6): 643-650
doi: 10.1107/S2052520618014579
LIU L L, YANG Y, JING Q, DONG X Y, YANG Z H, PAN S L, WU K. K5Ba10(BO3)8F: A new stepassium barium borate fluoride with a perovskite-like structure[J]. J. Phys. Chem. C, 2016, 120(33): 18763-18770
doi: 10.1021/acs.jpcc.6b05489
CONRAD M, PIETZONKA C, BERNZEN J, MOTTA V, WEITZEL K M, KARTTUNEN A J, KRAUS F. The fluoroperovskite TlMnF3[J]. Z. Anorg. Allg. Chem., 2018, 644(22): 1557-1561
doi: 10.1002/zaac.201800305
ZHANG M, WANG Z H, MO M S, CHEN X Y, ZHANG R, YU W C, QIAN Y T. A simple approach to synthesize KNiF3 hollow spheres by solvothermal method[J]. Mater. Chem. Phys., 2005, 89(2/3): 373-378
CHUN J Y, JO C S, LIM E H, ROH K C, LEE J W. Solvothermal synthesis of sodium cobalt fluoride (NaCoF3) nanoparticle clusters[J]. Mater. Lett., 2017, 207: 89-92
doi: 10.1016/j.matlet.2017.07.059
HANABATA S, KUSADA K, YAMAMOTO T, TORIYAMA T, MATSUMURA S, KAWAGUCHI S, KUBOTA Y, NISHIDA Y, HANEDA M, KITAGAWA H. Denary high-entropy oxide nanoparticles synthesized by a continuous supercritical hydrothermal flow process[J]. J. Am. Chem. Soc., 2024, 146(1): 181-186
doi: 10.1021/jacs.3c07351
ZHANG X Y, LIU X D, HE M J, ZHANG Y C, SUN Y C, LU X C. A molecular dynamics simulation study of KF and NaF ion pairs in hydrothermal fluids[J]. Fluid Phase Equilib., 2020, 518(S1): 112625
FEDOTOVA M V, GAVRILOVA E L. Structural parameters of aqueous solutions of stepassium fluoride under hydrothermal conditions[J]. Russ. J. Gen. Chem., 2009, 79(1): 7-15
doi: 10.1134/S1070363209010022
YAMADA Y, DOI T, TANAKA I, OKADA S, YAMAKI J I. Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries[J]. J. Power Sources, 2011, 196(10): 4837-4841
doi: 10.1016/j.jpowsour.2011.01.060
SIEBENEICHLER S, DORN K V, SMETANA V, VALLDOR M, MUDRING A V. A soft chemistry approach to the synthesis of single crystalline and highly pure (NH4)CoF3 for optical and magnetic investigations[J]. J. Chem. Phys., 2020, 153(10): 104501
doi: 10.1063/5.0023343
HU R S, LI C, WANG X, ZHOU T T, YANG X Z, GAO G J, ZHANG Y L. Synthesis of perovskite KMgF3 with microemulsion for photocatalytic removal of various pollutants under visible light[J]. Catal. Commun., 2013, 40: 71-75
doi: 10.1016/j.catcom.2013.06.007
WU J, WANG B, LIU Z Y, ZHANG K, LI X S, HUANG J H, LIU P F, ZENG Q G. A novel Mn4+-activated layered oxide-fluoride perovskite-type KNaMoO2F4 red phosphor for wide gamut warm white light-emitting diode backlights[J]. Dalton Trans., 2021, 50(32): 11189-11196
doi: 10.1039/D1DT01863A
LIU Y, HUANG A Q, YANG S C, DUAN Z J, LI Z G, LI Z T, LAN H, PENG A Z, WEN X D, WANG Z L. Synthesis and optical properties of a new double-perovskite Rb2KInF6∶Mn4+ red phosphor used for blue LED pumped white lighting[J]. Opt. Mater., 2022, 127: 112307
doi: 10.1016/j.optmat.2022.112307
MOON E J, XIE Y J, LAIRD E D, KEAVNEY D J, LI C Y, MAY S J. Fluorination of epitaxial oxides: Synthesis of perovskite oxyfluoride thin films[J]. J. Am. Chem. Soc., 2014, 136: 2224-2227
doi: 10.1021/ja410954z
WANG C, NIE R M, DAI Y M, TAI H Y, ZHU B J, ZHAO L Y, WU Y, GUO W L, SEOK S. Enhancing the inherent stability of perovskite solar cells through chalcogenide-halide combinations[J]. Energy Environ. Sci., 2024, 17(4): 1368-1386
doi: 10.1039/D3EE03612J
RAJ R, SINGH R, GUIN M. Chalcogenide perovskite, an emerging photovoltaic material: Current status and future perspectives [J]. ChemistrySelect, 2023, 8(45): e202303550
doi: 10.1002/slct.202303550
ADJOGRI S J, MEYER E L. Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: A study of their properties, and stepential photovoltaic applications[J]. Materials, 2021, 14(24): 7857
doi: 10.3390/ma14247857
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Lifang HE , Wenjie TANG , Yaoze LUO , Mingsheng LIANG , Jianxin TANG , Yuxuan WU , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Bin SUN , Heyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
Lei Feng , Ze-Min Zhu , Ying Yang , Zongbin He , Jiafeng Zou , Man-Bo Li , Yan Zhao , Zhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042