Citation: Yuting DU, Jing YUAN, Peiyao DENG. Synthesis and application of a fluorescent probe for the detection of reduced glutathione[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461 shu

Synthesis and application of a fluorescent probe for the detection of reduced glutathione

  • Corresponding author: Yuting DU, yutingdu123@163.com
  • Received Date: 27 December 2024
    Revised Date: 10 April 2025

Figures(7)

  • In this study, a fluorescent probe, CDAS, was synthesized to detect reduced glutathione (GSH). CDAS was designed by incorporating triphenylamine as an electron-donating group and a 2, 4-dinitrobenzenesulfonyl moiety as an electron-withdrawing group, with the response mechanism based on intramolecular charge transfer (ICT). These components were linked through Knoevenagel condensation. The probe exhibited no fluorescence; however, upon interaction with GSH, a nucleophilic substitution reaction occurred between GSH and probe CDAS, significantly enhancing fluorescent intensity at 561 nm. In a mixture of phosphate-buffered saline (PBS) and acetonitrile (1∶1, V/V, 10 mmol·L-1, pH=7.4), CDAS demonstrated a low detection limit of 7.70 μmol·L-1, high selectivity for GSH, and a large Stokes shift of 179 nm. Notably, CDAS can be effectively utilized to detect GSH in human cervical cancer cells (HeLa cells) via fluorescent cell imaging.
  • 加载中
    1. [1]

      ARMSTRONG J S, STEINAUER K K, HORNUNG B, IRISH J M, LECANE P, BIRRELL G W, PEEHL D M, KNOX S J. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line[J]. Cell Death Differ., 2002, 9: 252-263  doi: 10.1038/sj.cdd.4400959

    2. [2]

      HARRIS I S, TRELOAR A E, INOUE S, SASAKI G C, LEE K C, YUNG K Y, BRENNER D, KNOBBE-THOMSEN C B, COX M A, ELIA. BERGER T, CESCON D W, ADEOYE A, BRUSTLE A, MOLYNEUX S D, MASON J M, LI W Y, YAMAMOTO K, WAKEHAM A, BERMAN H K, KHOKHA R, DONE S J, KAVANAGH T J, LAM C W, MAK T W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression[J]. Cancer Cell, 2015, 27: 211-222  doi: 10.1016/j.ccell.2014.11.019

    3. [3]

      WATANABE T, SAGISAKA H, ARAKAWA S, SHIBAYA Y, WATANABE M, IGARASHI I, TANAKA K, TOTSUKA S, TAKASAKI W, MANABE S. A novel model of continuous depletion of glutathione in mice treated with L-buthionine (S, R)-sulfoximine[J]. J. Toxicol. Sci., 2003, 28: 455-469  doi: 10.2131/jts.28.455

    4. [4]

      TROYANO A, SANCHO P, FERNANDEZ C, DE BLAS E, BERNARDI P, ALLER P. The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells[J]. Cell Death Differ., 2003, 10: 889-898  doi: 10.1038/sj.cdd.4401249

    5. [5]

      BALENDIRAN G, DABURR, FRASER D. The role of glutathione in cancer[J]. Cell Biochem. Funct., 2004, 22: 343-352  doi: 10.1002/cbf.1149

    6. [6]

      ORTEGA A, MENA S, ESTRELA J. Glutathione in cancer cell death[J]. Cancers, 2011, 3(1): 1285-1310  doi: 10.3390/cancers3011285

    7. [7]

      TOWNSEN D M, TEW K D, TAPIERO H. The importance of glutathione in human disease[J]. Biomed. Pharmacother., 2003, 57(3): 145-155

    8. [8]

      KAMENCIC H, LYON A, PATERSON P G, JUURLINK B H. Monochlorobimane fluorometric method to measure tissue glutathione[J]. Anal. Biochem., 2000, 286(1): 35-37  doi: 10.1006/abio.2000.4765

    9. [9]

      ROUSAR T, KUCERA O, LOTKOVA H. Assessment of reduced glutathione: Comparison of an optimized fluorometric assay with enzymatic recycling method[J]. Anal. Biochem., 2012, 423(2): 236-240  doi: 10.1016/j.ab.2012.01.030

    10. [10]

      SENFT A P, DALTON T P, SHERTTZER H G. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde[J]. Anal. Biochem., 2000, 280(1): 80-86  doi: 10.1006/abio.2000.4498

    11. [11]

      BAO X Z, CAO X H, YUAN Y, ZHOU B, HUO C D. A water-soluble, highly sensitive and ultrafast fluorescence probe for imaging of mitochondrial hypochlorous acid[J]. Sens. Actuator B‒Chem., 2021, 344: 130210  doi: 10.1016/j.snb.2021.130210

    12. [12]

      WANG Z K, WANG S, WANG B Y, SHEN J L, ZHAO L L, YU F B, HOU J T. A two-pronged detection of atherosclerosis with a dual-channel fluorescent probe for viscosity and hypochlorous acid[J]. Chem. Eng. J., 2023, 464: 142687  doi: 10.1016/j.cej.2023.142687

    13. [13]

      YANG Y P, QI F J, QIAN Y P, BAO X Z, ZHANG H C, MA B, DAI F, ZHANG S X, ZHOU B. Developing push-pull hydroxylphenylpoly-enylpyridinium chromophores as ratiometric two-photon fluorescent probes for cellular and intravital imaging of mitochondrial NQO1[J]. Anal. Chem., 2021, 93(4): 2385-2393  doi: 10.1021/acs.analchem.0c04279

    14. [14]

      WU Y Q, LUN W C, ZENG H, GUO X M, YANG M, LAN Q C. A facile near-infrared xanthene fluorescence probe for visualizing of hypochlorous acid in vitro and in vivo[J]. Anal. Chim. Acta, 2024, 1294: 342292  doi: 10.1016/j.aca.2024.342292

    15. [15]

      XU S L, GUO F F, XU Z H, WANG W, JAMES T D. A hemicyanine-based fluorescent probe for ratiometric detection of ClO- and turn-on detection of viscosity and its imaging application in mitochondria of living cells and zebrafish[J]. Sens. Actuator B‒Chem., 2023, 383: 133510  doi: 10.1016/j.snb.2023.133510

    16. [16]

      ZHAN Z X, LEI X, DAI Y C, WANG D N, YU Q W, LV Y, LI W M. Simultaneous monitoring of HOCl and viscosity with drug-induced pyroptosis in live cells and acute lung injury[J]. Anal. Chem., 2022, 94(35): 12144-12151  doi: 10.1021/acs.analchem.2c02235

    17. [17]

      YAN H M, HUO F J, YUE Y K, CHAO J B, YIN C X. Rapid reaction, slow dissociation aggregation, and synergetic multicolor emission for imaging the restriction and regulation of biosynthesis of Cys and GSH[J]. J. Am. Chem. Soc., 2020, 143(1): 318-325

    18. [18]

      LONG Y, LIU J R, JU Z H, QI F J, TANG W, YAN S, DAI F, ZHANG S X, ZHOU B. Two-photon cellular and intravital imaging of hypochlorous acid by fluorescent probes that exhibit a synergistic excited-state intramolecular proton transfer-intramolecular charge transfer mechanism enabling near-infrared emission with a large Stokes shift[J]. Anal. Chem., 2024, 96(45): 18104-18112  doi: 10.1021/acs.analchem.4c04075

    19. [19]

      DUAN D C, LIU J R, ZHENG Y L, CHEN H, ZHANG X Y, ZHANG Y, DAI F, ZHANG S X, ZHOU B. Cellular and intravital imaging of NAD(P)H by a red-emitting quinolinium-based fluorescent probe that features a shift of its product from mitochondria to the nucleus[J]. Anal. Chem., 2023, 95(2): 1335-1342

    20. [20]

      WANG F Y, ZHOU L, ZHAO C C, WANG R, FEI Q, LUO S H, GUO Z Q, TIAN H, ZHU W H. A dual-response BODIPY-based fluorescent probe for the discrimination of glutathione from cystein and homocystein[J]. Chem. Sci., 2015, 6(4): 2584-2589  doi: 10.1039/C5SC00216H

    21. [21]

      CHENG G J S, QIN J M, LI X, CAO Q Y. A naphthalimide-based fluorescent probe with mitochondria targeting for GSH sensing and cancer cell recognition[J]. Dyes Pigment., 2023, 211: 111089  doi: 10.1016/j.dyepig.2023.111089

    22. [22]

      HOU X F, GUO X L, CHEN B, LIU, C H, GAO F, ZHAO J, WANG J H. Rhodamine-based fluorescent probe for highly selective detection of glutathione over cysteine and homocysteine[J]. Sens. Actuator B‒Chem., 2015, 209: 838-845  doi: 10.1016/j.snb.2014.12.009

    23. [23]

      LIU C, ZHANG Y, SUN W, ZHU H, SU M, WANG X, RONG X, WANG K, YU M, SHENG W, ZHU B. A novel GSH-activable theranostic probe containing kinase inhibitor for synergistic treatment and selective imaging of tumor cells[J]. Talanta, 2023, 260: 124567  doi: 10.1016/j.talanta.2023.124567

    24. [24]

      LIU J, SUN Y Q, HUO Y Y, ZHANG H X, WANG L F, ZHANG P, SONG D, SHI Y W, GUO W. Simultaneous fluorescence sensing of Cys and GSH from different emission channels[J]. J. Am. Chem. Soc., 2014, 136(2): 574-577  doi: 10.1021/ja409578w

    25. [25]

      CHEN J W, JIANG X Q, ZHANG C W, MACKENZIE K, STOSSI F, PALZKILL T, WANG M C, WANG J. Reversible reaction-based fluorescent probe for real-time imaging of glutathione dynamics in mitochondria[J]. ACS Sens., 2017, 2(9): 1257-1261  doi: 10.1021/acssensors.7b00425

    26. [26]

      ZHENG Y L, ZHANG H C, TIAN D H, DUAN D C, DAI F, ZHOU B. Rational design of an ESIPT-based fluorescent probe for selectively monitoring glutathione in live cells and zebrafish[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2020, 238: 118429  doi: 10.1016/j.saa.2020.118429

    27. [27]

      ZHANG J, BAO X L, ZHOU J L, PENG F F, REN H, DONG X C, ZHAO W L. A mitochondria-targeted turn-on fluorescent probe for the detection of glutathione in living cells[J]. Biosens. Bioelectron., 2016, 85: 164-170  doi: 10.1016/j.bios.2016.05.005

    28. [28]

      YIN J L, ZHAN J T, HU Q X, HUANG S H, LIN W Y. Fluorescent probes for ferroptosis bioimaging: Advances, challenges, and prospects[J]. Chem. Soc. Rev., 2023, 52(6): 2011-2030  doi: 10.1039/D2CS00454B

    29. [29]

      XU Z Y, QIN T Y, ZHOU X F, WANG L, LIU B. Fluorescent probes with multiple channels for simultaneous detection of Cys, Hcy, GSH, and H2S[J]. Trac-Trends Anal. Chem., 2019, 121: 115672  doi: 10.1016/j.trac.2019.115672

    30. [30]

      KOTHAVALE S, SEKAR N. Methoxy supported, deep red emitting mono, bis and tris triphenylamine-isophorone based styryl colorants: Synthesis, photophysical properties, ICT, TICT emission and viscosity sensitivity[J]. Dyes Pigment., 2017, 136: 116-130  doi: 10.1016/j.dyepig.2016.08.025

    31. [31]

      NING Z J, TIAN H. Triarylamine: A promising core unit for efficient photovoltaic materials[J]. Chem. Commun., 2009, 37: 5483-5495

    32. [32]

      GAN X P, WANG Y, GE X P, LI, W, ZHANG X Z, ZHU W J, ZHOU H P, WU J Y, TIAN Y P. Triphenylamine isophorone derivatives with two photon absorption: Photo-physical property, DFT study and bio-imaging[J]. Dyes Pigment., 2015, 120: 65-73  doi: 10.1016/j.dyepig.2015.04.007

    33. [33]

      NI L. Preparation and detection application of triphenylamine-containing fluorescent probes with aggregation-induced emission[D]. Guangzhou: South China University of Technology, 2020: 1-60

    34. [34]

      WANG H L. Synthesis and study fluorene, pyrene and thiophene-based conjugated organic small molecules for solution-processable memory performance[D]. Suzhou: Soochow University, 2018: 1-112

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    11. [11]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    14. [14]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    15. [15]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    16. [16]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return