Citation: Yupeng TANG, Haiying YANG, Fan JIN, Nan LI. Hydrogen storage properties of C6S6Li6: A density functional theory study[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460 shu

Hydrogen storage properties of C6S6Li6: A density functional theory study

  • Corresponding author: Nan LI, Leen04@bit.edu.cn
  • Received Date: 27 December 2024
    Revised Date: 2 July 2025

Figures(11)

  • In this paper, the hydrogen storage properties of C6S6Li6 were studied by two density functional methods. C6S6Li6 was dynamically stable and could adsorb up to 38 H2 molecules with a hydrogen storage density of 20.213%. The average adsorption energy of C6S6Li6(H2)38 was very close to the energy range (0.1-0.8 eV) for reversible hydrogen storage at near ambient conditions. Various wave function analysis methods revealed that the 2s→2p electron transition of Li in C6S6Li6 and the electric field of each charged atom jointly dominated Van der Waals attractions between C6S6Li6 and hydrogen molecules. Thermo-chemistry calculations indicated that 6, 32, and 38 H2 molecules in C6S6Li6(H2)38 could be readily adsorbed at 77 K and desorbed at 298.15 K under 0.1, 2.5, and 5.0 MPa, respectively. This process corresponds to the reversible hydrogen storage densities of 3.846%, 17.582%, and 20.213%. Atom density matrix propagation (ADMP) molecular dynamic simulations indicated that most of the hydrogen molecules in C6S6Li6(H2)38 got efficiently released at room temperature. The (C6S6Li6)2 dimer could also adsorb 53 H2 molecules with a gravimetric density of 15.014%. The average adsorption energy for C12S12Li12(H2)53 could approach the reversible energy range for hydrogen storage.
  • 加载中
    1. [1]

      LUBITZ W, TUMAS W. Hydrogen: An overview[J]. Chem. Rev., 2007,107(10): 3900-3903  doi: 10.1021/cr050200z

    2. [2]

      SCHLAPBACH L, ZÜTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414: 353-358  doi: 10.1038/35104634

    3. [3]

      SARTBAEVA A, KUZNETSOV V L, WELLS S A, EDWARDS P P. Hydrogen nexus in a sustainable energy future[J]. Energy Environ. Sci., 2008, 1: 79-85  doi: 10.1039/b810104n

    4. [4]

      HU Y H. Novel hydrogen storage systems and materials[J]. Int. J. Energy Res., 2013, 37: 683-685  doi: 10.1002/er.3056

    5. [5]

      LUO W, CAMPBELL P G, ZAKHAROV L N, LIU S Y. A single-component liquid-phase hydrogen storage material[J]. J. Am. Chem. Soc., 2011,133(48): 19326-19329  doi: 10.1021/ja208834v

    6. [6]

      HU T H, LI Z H, ZHANG Q F. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels[J]. Acta Phys. Sin., 2024, 73(6): 067101

    7. [7]

      RUSMAN N A A, DAHARI M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. Int. J. Hydrog. Energy, 2016, 41(28): 12108-12126  doi: 10.1016/j.ijhydene.2016.05.244

    8. [8]

      ZHOU W L, JIN S Y, DAI W, LYON J T, LU C. Theoretical study on the structural evolution and hydrogen storage in NbHn (n = 2-15) clusters[J]. Int. J. Hydrog. Energy, 2021, 46(33): 17246-17252  doi: 10.1016/j.ijhydene.2021.02.095

    9. [9]

      SUN Y, SHEN C, LAI Q, LIU W, WANG D W, AGUEY-ZINSOU K F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art[J]. Energy Storage Mater., 2018, 10: 168-198  doi: 10.1016/j.ensm.2017.01.010

    10. [10]

      ZHANG Q Y, DU S C, MA Z W, LIN X, ZHOU J X, ZHU W, REN L, LI Y H. Recent advances in Mg-based hydrogen storage materials[J]. Chin. Sci. Bull., 2022, 67(19): 2158-2171

    11. [11]

      CHEN H J, LIANG H, DAI W, LU C, DING K W, BI J, ZHU B C. MgScH15: A highly stable cluster for hydrogen storage[J]. Int. J. Hydrog. Energy, 2020, 45(56): 32260-32268  doi: 10.1016/j.ijhydene.2020.08.229

    12. [12]

      DILLON A C, JONES K M, BEKKEDAHL T A, KIANG C H, BETHUNE D S, HEBEN M J. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997,386: 377-379  doi: 10.1038/386377a0

    13. [13]

      ZÜTTEL A, SUDAN P, MAURON P H, KIYOBAYASHI T, EMMENEGGER C H, SCHLAPBACH L. Hydrogen storage in carbon nanostructures[J]. Int. J. Hydrog. Energy, 2002, 27(2): 203-212  doi: 10.1016/S0360-3199(01)00108-2

    14. [14]

      ZHANG X R, WANG W C. A density functional study of hydrogen adsorption in single-walled carbon nanotube arrays[J]. Acta Chim. Sin., 2002, 60(8): 1396-1404  doi: 10.3321/j.issn:0567-7351.2002.08.008

    15. [15]

      WU H L, QIU J S, HAO C, TANG Z A. Molecular dynamics simulation study of hydrogen storage in heterojunction carbon nanotubes[J]. Acta Chim. Sin., 2005, 63(11): 990-996  doi: 10.3321/j.issn:0567-7351.2005.11.007

    16. [16]

      JENA P J. Materials for hydrogen storage: Past, present, and future[J]. J. Phys. Chem. Lett., 2011, 2(3): 206-211  doi: 10.1021/jz1015372

    17. [17]

      Hydrogen and Fuel Cell Technologies Office. DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. [2025-05-22].https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

    18. [18]

      YILDIRIM T, CIRACI S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium[J]. Phys. Rev. Lett., 2005, 94: 175501  doi: 10.1103/PhysRevLett.94.175501

    19. [19]

      TANG C M, WU J R, WAN Y M, ZHANG Z J, KANG J, XIANG Y Y, ZHU W H. Geometric structure, electronic property, and hydrogen storage capacity of the Sc atoms decorated expanded sandwich type structure graphene-Sc-graphene[J]. Acta Chim. Sin., 2015, 73(11): 1189-1195

    20. [20]

      SHIN W H, YANG S H, GODDARD W A, KANG J K. Ni-dispersed fullerenes: Hydrogen storage and desorption properties[J]. Appl. Phys. Lett., 2006, 88(5): 053111  doi: 10.1063/1.2168775

    21. [21]

      SUN Q, WANG Q, JENA P, KAWAZOE Y. Clustering of Ti on a C60 surface and its effect on hydrogen storage[J]. J. Am. Chem. Soc., 2005,127(42): 14582-14585  doi: 10.1021/ja0550125

    22. [22]

      ZHANG M M, ZHANG F, WU Q, HUANG X, YAN W, ZHAO C M, CHEN W, YANG Z H, WANG Y H, WU T T. Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene[J]. Chin. Phys. B., 2023, 32(6): 066803  doi: 10.1088/1674-1056/ac8ce2

    23. [23]

      SUN Q, JENA P, WANG Q, MARQUEZ M. First-principles study of hydrogen storage on Li12C60[J]. J. Am. Chem. Soc., 2006,128(30): 9741-9745  doi: 10.1021/ja058330c

    24. [24]

      TEPROVICH J A, WELLONS M S, LASCOLA R, HWANG S J, WARD P A, COMPTON R N, ZIDAN R. Synthesis and characterization of a lithium-doped fullerane (Lix-C60-Hy) for reversible hydrogen storage[J]. Nano. Lett., 2012, 12(2): 582-589  doi: 10.1021/nl203045v

    25. [25]

      QI P T, CHEN H S. Hydrogen storage properties of Li-decorated C24 clusters[J]. Acta Phys. Sin., 2015, 64(23): 238102  doi: 10.7498/aps.64.238102

    26. [26]

      REN H J, CUI C X, LI X J, LIU Y J. A DFT study of the hydrogen storage potentials and properties of Na- and Li-doped fullerenes[J]. Int. J. Hydrog. Energy, 2017, 42(1): 312-321  doi: 10.1016/j.ijhydene.2016.10.151

    27. [27]

      SAHOO R K, CHAKRABORTY B, SAHU S. Reversible hydrogen storage on alkali metal (Li and Na) decorated C20 fullerene: A density functional study[J]. Int. J. Hydrog. Energy, 2021, 46(80): 40251-40261  doi: 10.1016/j.ijhydene.2021.09.219

    28. [28]

      PENG Q, CHEN G, MIZUSEKI H, KAWAZOE Y. Hydrogen storage capacity of C60(OM)12 (M = Li and Na) clusters[J]. J. Chem. Phys., 2009,131(21): 214505  doi: 10.1063/1.3268919

    29. [29]

      GUO J C, LU H G, Li S D. M(C6X6Li6)2 (M = Cr, Mo, W; X = O, S): Transition-metal sandwich complexes with π-aromatic C6X6Li6 ligands[J]. Comput. Theor. Chem., 2013, 1018(15): 95-101

    30. [30]

      KOSAR N, ZARI L, AYUB K, GILANI M A, MAHMOOD T. Static, dynamic nonlinear optical (NLO) response and electride characteristics of superalkalis doped starlike C6S6Li6[J]. Surf. Interfaces, 2022, 31: 102044  doi: 10.1016/j.surfin.2022.102044

    31. [31]

      BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem. Phys., 1993, 98(7): 5648-5652  doi: 10.1063/1.464913

    32. [32]

      LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789  doi: 10.1103/PhysRevB.37.785

    33. [33]

      CHAI J D, GORDON M H. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Phys. Chem. Chem. Phys., 2008, 10(44): 6615-6620  doi: 10.1039/b810189b

    34. [34]

      SAHOO R K, SAHU S. Reversible hydrogen storage capacity of Li and Sc doped novel C8N8 cage: Insights from density functional theory[J]. Int. J. Energy Res., 2022, 46(15): 1-16

    35. [35]

      BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol. Phys., 1970, 19(4): 553-566  doi: 10.1080/00268977000101561

    36. [36]

      LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem., 2012, 33(5): 580-592  doi: 10.1002/jcc.22885

    37. [37]

      BADER R W F. Atoms in molecules: A quantum theory[M]. Oxford: Clarendon, 1990: 53-351

    38. [38]

      LU T, CHEN Q X. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. J. Comput. Chem., 2022, 43(8): 539-555  doi: 10.1002/jcc.26812

    39. [39]

      SCHELEGEL H B, IYENGAR S S, LI X S, MILLAM J M, VOTH G A, SCUSERIA G E, FRISCH M J. Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. Ⅲ. Comparison with Born-Oppenheimer dynamics[J]. J. Chem. Phys., 2002,117(19): 8694-8704

    40. [40]

      WOLINSKI K, HINTON J F, PULAY P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations[J]. J. Am. Chem. Soc., 1990,112(23): 8251-8260

    41. [41]

      TAYHARE P, DESHMUKH A, CHAUDHARI A. Impact of position and number of boron atom substitution on hydrogen uptake capacity of Li-decorated pentalene[J]. Phys. Chem. Chem. Phys., 2017, 19(1): 681-694

    42. [42]

      DU J G, JIANG G. An aromatic Ca2B8 complex for reversible hydrogen storage[J]. Int. J. Hydrog. Energy, 2021, 46(36): 19023-19030

    43. [43]

      YIN Y H, XU H P. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field[J]. Acta Phys. Sin., 2019, 68(16): 163601

    44. [44]

      SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions[J]. Nature, 1994,371: 683-686

    45. [45]

      LU T, CHEN F W. Meaning and functional form of the electron localization function[J]. Acta Phys.‒Chim. Sin., 2011, 27(12): 2786-2792

    46. [46]

      TAI T B, NGUYEN M T. A three-dimensional aromatic B6Li8 complex as a high capacity hydrogen storage material[J]. Chem. Commun., 2013, 49(9): 913-915

    47. [47]

      DU J G, SUN X Y, JIANG G. Hydrogen storage capability of cagelike Li3B12 clusters[J]. J. Appl. Phys., 2020,127(5): 054301

    48. [48]

      BANERJEE P, PATHAK B, AHUJA R, DAS G P. First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage[J]. Int. J. Hydrog. Energy, 2016, 41(32): 14437-14446

    49. [49]

      JAISWAL A, SAHOO R K, RAY S S, SAHU S. Alkali metals decorated silicon clusters (SinMn, n = 6, 10; M = Li, Na) as potential hydrogen storage materials: A DFT study[J]. Int. J. Hydrog. Energy, 2022, 47(3): 1775-1789

  • 加载中
    1. [1]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    5. [5]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    6. [6]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    7. [7]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    13. [13]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    15. [15]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    16. [16]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(0)
  • Abstract views(61)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return