Citation: Qian ZHANG, Yuxuan ZHANG, Yongguang YANG, Ruijie BAI, Yuandong LI, Ling LI. FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442 shu

FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells

  • Corresponding author: Ling LI, lilinghbu@163.com
  • Received Date: 11 December 2024
    Revised Date: 2 July 2025

Figures(7)

  • Herein, an FMS/CC composite was successfully fabricated by depositing FeMoS4 onto a pristine carbon fiber cloth (CC) substrate via a facile two-step hydrothermal method. The amorphous nature of the FMS/CC composite endows it with abundant catalytically active sites, thereby accelerating the reduction of I3-. More importantly, the dye-sensitized solar cells (DSSCs) prepared by scraping it on flexible titanium mesh with low resistance had low series resistance (Rs). Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency (PCE) of ca. 9.51% (surpassing the ca. 8.15% efficiency of the Pt counter electrode), open-circuit voltage (Voc) of ca. 0.79 V, short-circuit current density (Jsc) of ca. 18.31 mA·cm-2, and fill factor (FF) of ca. 0.65. Moreover, after 100 times of cyclic voltammetry (CV) test, the CV curve remainedunchanged, indicating the excellent stability of FMS/CC in the electrolyte containing I3-/I-.
  • 加载中
    1. [1]

      ASOK A, HARIBABU K. Synthesis and performance of polythiophene-iridium oxide composite as counter electrode in dye sensitized solar cell[J]. Curr. Appl. Phys., 2023, 49: 64-69  doi: 10.1016/j.cap.2023.02.019

    2. [2]

      NOROUZIBAZAZ M, GHOLIVAND M B, TAHERPOUR A A, MIRZAEI M. Experimental and computational investigation of multi-walled carbon nanotubes decorated by Co-Ni-Se@MoSe2 core-shell as a sustainable counter electrode for dye-sensitized solar cells[J]. Mater. Today Energy, 2023, 38: 101447  doi: 10.1016/j.mtener.2023.101447

    3. [3]

      TOMAR N, DHAKA V S, SUROLIA P K. A brief review on carbon nanomaterial counter electrodes for N719 based dye-sensitized solar cells[J]. Mater. Today: Proceed., 2021, 43: 2975-2978  doi: 10.1016/j.matpr.2021.01.325

    4. [4]

      SHARMA K, SHARMA V, SHARMA S. Dye-sensitized solar cells: Fundamentals and current status[J]. Nanoscale Res. Lett., 2018, 13: 1-46  doi: 10.1186/s11671-017-2411-3

    5. [5]

      ABDULLAEV S S, BREESAM Y F, ALZUBAIDI A A, TRIPATHI A K, KAREEM A, KUZNETSOV S V, ALAWSI T, ZABIBAH R S. ZnO@ZnCo2O4 core-shell: A novel high electrocatalytic nanostructure to replace platinum as the counter electrode in dye-sensitized solar cells[J]. Mater. Sci. Semicond. Process, 2023, 165: 107709  doi: 10.1016/j.mssp.2023.107709

    6. [6]

      QI X N, SONG C P, ZHANG W H, SHI Y Q, GAO Y Y, LIU H, CHEN R, SHANG L W, TAN H R, TAN F R. Bidirectional targeted therapy enables efficient, stable, and eco-friendly perovskite solar cells[J]. Adv. Funct. Mater., 2023, 33(19): 2214714  doi: 10.1002/adfm.202214714

    7. [7]

      ZH M, YE M D, WANG W L, MA C Y, WANG S, LIU Q L, LIAN T Q, HUANG J S, LIN Z Q. Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high-efficiency perovskite solar cells[J]. Adv. Mater., 2020, 32(28): 2000999  doi: 10.1002/adma.202000999

    8. [8]

      MIRZAEI M, GHOLIVAND M B. Synthesis of ruthenium sulfide nanoparticles decorated on reduced graphene oxide/multi-walled carbon nanotubes as a catalytic counter electrode for dye-sensitized solar cells exceeding 13% efficiency[J]. Sol. Energy, 2022, 242: 212-224  doi: 10.1016/j.solener.2022.07.010

    9. [9]

      ZATIROSTAMI A. A new electrochemically prepared composite counter electrode for dye-sensitized solar cells[J]. Thin Solid Films, 2020, 701: 137926  doi: 10.1016/j.tsf.2020.137926

    10. [10]

      ZHANG Z Y, LIU M Z, WANG Z X, ZHANG Q, LI L. Favosites shaped carbon nanofibers modified by bimetallic Zn-Ni-MOF derivatives loaded with CoS2 as counter electrode material for liquid film dye-sensitized solar cells[J]. Surf. Interfaces, 2024, 44: 103734  doi: 10.1016/j.surfin.2023.103734

    11. [11]

      SAMANTARAY M R, MONDAL A K, MURUGADOSS G, PITCHAIMUTHU S, DAS S, BAHRU R, MOHAMED M A. Synergetic effects of hybrid carbon nanostructured counter electrodes for dye-sensitized solar cells: A review[J]. Materials, 2020, 13(12): 2779  doi: 10.3390/ma13122779

    12. [12]

      ALTINKAYA C, ATLI A, ATILGAN A, SALIMI K, YILDIZ A. Facile fabrication of low-cost low-temperature carbon-based counter electrode with an outstanding fill factor of 73% for dye-sensitized solar cells[J]. Int. J. Energy Res., 2020, 44(4): 3160-3170  doi: 10.1002/er.5174

    13. [13]

      ASLAM A, MEHMOOD U, ARSHAD M H, ISHFAQ A, ZAHEER J, KHAN A U H, SUFYAN M. Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications[J]. Sol. Energy, 2020, 207: 874-892  doi: 10.1016/j.solener.2020.07.029

    14. [14]

      PRIYA N S, GRACE A N. Poly(3, 4-ethylenedioxythiophene) decorated MXene as an alternative counter electrode for dye-sensitized solar cells[J]. Mater. Today Chem., 2022, 26: 101113  doi: 10.1016/j.mtchem.2022.101113

    15. [15]

      PETER I J, VIJAYA S, ANANDAN S, NITHIANANTHI P. Sb2S3 entrenched MWCNT composite as a low-cost Pt-free counter electrode for dye-sensitized solar cell and a viewpoint for a photo- powered energy system[J]. Electrochim. Acta, 2021, 390: 138864  doi: 10.1016/j.electacta.2021.138864

    16. [16]

      MIRZAEI M, GHOLIVAND M B. Introduction of Pt-free counter electrode based on f-MWCNTs@NiMoSe2 nanocomposite for efficient dye-sensitized solar cells[J]. Sol. Energy, 2021, 227: 67-77  doi: 10.1016/j.solener.2021.09.003

    17. [17]

      KAMARULZAMAN U A, RAHMAN M Y A, SU′AIT M S, UMAR A A. Nickel palladium alloy-reduced graphene oxide as counter electrode for dye-sensitized solar cells[J]. J. Mol. Liq., 2021, 326: 115289  doi: 10.1016/j.molliq.2021.115289

    18. [18]

      ZATIROSTAMI A. Carbon black/SnSe composite: A low-cost, high performance counter electrode for dye sensitized solar cells[J]. Thin Solid Films, 2021, 725: 138642  doi: 10.1016/j.tsf.2021.138642

    19. [19]

      AKMAN E, KARAPINAR H S. Electrochemically stable, cost-effective and facile produced selenium@activated carbon composite counter electrodes for dye-sensitized solar cells[J]. Sol. Energy, 2022, 234: 368-376  doi: 10.1016/j.solener.2022.02.011

    20. [20]

      AHMADI M, ANAGHIZI S J, ASEMI M, GHANAATSHOAR M. Plasma-treated room temperature synthesized CuCrO2/Au/CuCrO2 on polyethylene terephthalate: Towards a high-performance flexible p-type transparent conductor[J]. Thin Solid Films, 2021, 723: 138582  doi: 10.1016/j.tsf.2021.138582

    21. [21]

      SILAMBARASAN K, HARISH S, HARA K, ARCHANA J, NAVANEETHAN M. Ultrathin layered MoS2 and N-doped graphene quantum dots (N-GQDs) anchored reduced graphene oxide (rGO) nanocomposite-based counter electrode for dye-sensitized solar cells[J]. Carbon, 2021, 181: 107-117  doi: 10.1016/j.carbon.2021.01.162

    22. [22]

      ZAMBRZYCKI M, PIECH R, RAGA S R, LIRA-CANTU M, FRACZEK-SZCZYPTA A. Hierarchical carbon nanofibers/carbon nanotubes/NiCo nanocomposites as novel highly effective counter electrode for dye-sensitized solar cells: A structure-electrocatalytic activity relationship study[J]. Carbon, 2023, 203: 97-110  doi: 10.1016/j.carbon.2022.11.047

    23. [23]

      WU K Z, LIU S, WU Y S, RUAN B, GUO J N, WU M X. N-doped W2C derived from polyoxotungstate precursors by pyrolysis along the temperature gradient as Pt-free counter electrode in dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells, 2022, 236: 111503  doi: 10.1016/j.solmat.2021.111503

    24. [24]

      TIAN F Y, GENG S, HE L, HUANG Y R, FAUZI A, YANG W W, LIU Y Q, YU Y S. Interface engineering: PSS-PPy wrapping amorphous Ni-Co-P for enhancing neutral-pH hydrogen evolution reaction performance[J]. Chem. Eng. J., 2021, 417: 129232  doi: 10.1016/j.cej.2021.129232

    25. [25]

      QIN W, LIU Y, LIU X Y, YANG G W. Facile and scalable production of amorphous nickel borate for high performance hybrid supercapacitors[J]. J. Mater. Chem. A, 2018, 6(40): 19689-19695  doi: 10.1039/C8TA07385F

    26. [26]

      YU J, XIAO J W, LI A R, YANG Z, ZENG L, ZHANG Q F, ZHU Y J, GUO L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries[J]. Angew. Chem. ‒Int. Edit., 2020, 59(31): 13071-13078  doi: 10.1002/anie.202004914

    27. [27]

      JIANG Q S, CHENG W J, WU J, LI W B, YAN K Y. An electrodeposited amorphous cobalt sulphide nanobowl array with secondary nanosheets as a multifunctional counter electrode for enhancing the efficiency in a dye-sensitized solar cell[J]. Electrochim. Acta, 2019, 324: 134896  doi: 10.1016/j.electacta.2019.134896

    28. [28]

      JIANG Q S, CHENG W J, LI W B, YANG Z Y, ZHANG Y L, JI R D, YANG X, JU Y F, YU Y S. One-step electrodeposition of amorphous nickel cobalt sulfides on FTO for high-efficiency dye-sensitized solar cells[J]. Mater. Res. Bull., 2019, 114: 10-17  doi: 10.1016/j.materresbull.2019.01.025

    29. [29]

      RAVICHANDRAN S, VARTHAMANAN Y, AKILANDESWARI, ELANGOVEN T, RAGUPATHI C, MURUGESAN S. Effect of polyaniline/FeS2 composite and usages of alternates counter electrode for dye-sensitized solar cells[J]. Mater. Today: Proceed., 2022, 49: 2615-2619  doi: 10.1016/j.matpr.2021.07.329

    30. [30]

      ASLAN E, SARILMAZ A, OZEL F, HATAY P I, GIRAULT H H. Catalytic hydrogen evolution by molybdenum-based ternary metal sulfide nanoparticles[J]. ACS Appl. Nano Mater., 2019, 2(11): 7204-7213  doi: 10.1021/acsanm.9b01694

    31. [31]

      KOUTAVARAPU R, REDDY C V, BABU B, REDDY K, CHO M, SHIM J. Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution-A review[J]. Int. J. Hydrog. Energy, 2020, 45(13): 7716-7740  doi: 10.1016/j.ijhydene.2019.05.163

    32. [32]

      HU J, LI S W, CHU J Y, NIU S Q, WANG J, DU Y C, LI Z H, HAN X J, XU P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures[J]. ACS Catal., 2019, 9(12): 10705-10711  doi: 10.1021/acscatal.9b03876

    33. [33]

      WANG M Y, WANG X L, YAO Z J, TANG W J, XIA X H, GU C D, TU J P. SnO2 nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 24198-24204  doi: 10.1021/acsami.9b08378

    34. [34]

      BISWAS R K, KHAN P, MUKHERJEE S, MUKHOPADHYAY A K, GHOSH J, MURALEEDHARAN K. Study of short range structure of amorphous silica from PDF using Ag radiation in laboratory XRD system, Raman and NEXAFS[J]. J. Non‒Cryst. Solids, 2018, 488: 1-9  doi: 10.1016/j.jnoncrysol.2018.02.037

    35. [35]

      DESHMUKH P, BHATT J, PESHWE D, PATHAK S. Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash[J]. Trans. Indian Inst. Met., 2012, 65: 63-70  doi: 10.1007/s12666-011-0071-z

    36. [36]

      PATIL S A, HUSSAIN S, SHRESTHA N K, MENGAL N, JALALAH M, JUNG J, PARK J G, CHOI H, KIM H S, NOH Y Y. Facile synthesis of cobalt-nickel sulfide thin film as a promising counter electrode for triiodide reduction in dye-sensitized solar cells[J]. Energy, 2020, 202: 117730  doi: 10.1016/j.energy.2020.117730

    37. [37]

      XUE J Y, LI F L, ZHAO Z Y, LI C, NI C Y, GU H W, YOUNG D J, LANG J P. In situ generation of bifunctional Fe-doped MoS2 nanocanopies for efficient electrocatalytic water splitting[J]. Inorg. Chem., 2019, 58(16): 11202-11209  doi: 10.1021/acs.inorgchem.9b01814

    38. [38]

      YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf. Sci., 2008, 254(8): 2441-2449  doi: 10.1016/j.apsusc.2007.09.063

    39. [39]

      REN X, WANG W Y, GE R X, HAO S, QU F L, DU G, ASIRI A M, WEI Q, CHEN L, SUN X P. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions[J]. Chem. Commun., 2017, 53(64): 9000-9003  doi: 10.1039/C7CC03702C

    40. [40]

      RAJAVEDHANAYAGAM J, MURUGADOSS V, MAURYA D K, ANGAIAH S. Cu2NiSnS4/graphene nanohybrid as a newer counter electrode to boost-up the photoconversion efficiency of dye sensitized solar cell[J]. ES Energy Environ., 2022, 18(4): 65-74

  • 加载中
    1. [1]

      Shuo TianShuyun ChenYunsen WangDianping Tang . Liposomal photoelectrochemical immunoassay for low-abundance proteins with ternary transition metal sulfides for signal amplification. Chinese Chemical Letters, 2025, 36(7): 110418-. doi: 10.1016/j.cclet.2024.110418

    2. [2]

      Chen GuHuacao JiKeyu XuJianmei ChenKang ChenJunan PanNing SunLonglu Wang . The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation. Chinese Chemical Letters, 2025, 36(8): 110565-. doi: 10.1016/j.cclet.2024.110565

    3. [3]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    4. [4]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    5. [5]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    10. [10]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    11. [11]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    12. [12]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    13. [13]

      Jinjin YangChuanhui ZhuShuang ZhaoTao XiaPengfei TanYutian ZhangMei-Huan ZhaoYijie ZengMan-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891

    14. [14]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    15. [15]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    16. [16]

      Jiajia ZhuangChunyu CuiChangjiang LiGang LuoJiaping TongDi Sun . Counter-ion effect to the Ising-type magnetic anisotropy and magnetic relaxation in trigonal bipyramidal Co(Ⅱ) complexes. Chinese Chemical Letters, 2025, 36(7): 110091-. doi: 10.1016/j.cclet.2024.110091

    17. [17]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    18. [18]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    19. [19]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    20. [20]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

Metrics
  • PDF Downloads(0)
  • Abstract views(55)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return