Citation: Ronghui LI. Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440 shu

Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition

  • Received Date: 11 December 2024
    Revised Date: 6 March 2025

Figures(10)

  • Nitrogen-doped CeO2 thin films were synthesized by the ion beam-assisted deposition (IBAD) technique, and their photocatalytic performances were studied. The synthesized thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). Results showed that the IBAD technology enabled homogenous doping in the whole bulk of CeO2 thin films, with a significantly higher nitrogen content than traditional nitrogen doping methods. Nitrogen ion bombardment on the growing film surface did not alter the crystal structure of the films—instead, the heavy nitrogen doping induced a smaller grain size of CeO2. Additionally, with the increase of N doping, the surface became smoother with a smaller particle size. The heavy nitrogen doping also induced a redshift of the visible light absorbance edge from 370 to 480 nm, significantly enhancing the visible light absorption performance of CeO2 thin films. Photocatalytic degradation tests of methylene blue showed that after 120 min of visible light irradiation, the degradation rate of methylene blue in the solution exceeded 90% and was maintained at ca. 86% even after 6 cycles, demonstrating excellent visible light photocatalytic stability.
  • 加载中
    1. [1]

      PAN J B, SHEN S, ZHOU W, TANG J, DING H Z, WANG J B, CHEN L, QU Z T, YIN S F. Recent progress in photocatalytic hydrogen evolution[J]. Acta. Phys.-Chim. Sin., 2020,36(3)1905068.

    2. [2]

      WANG D X, ZHANG X T, YANG C Y, QU F Y, HUANG J, HE J B, YANG Z R, GUO W. Photocatalysis assisted solar-driven interfacial water evaporation: Principles, advances and trends[J]. Sep. Purif. Technol., 2024,360130975.

    3. [3]

      FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    4. [4]

      KHAN S U M, AL-SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002,297(5590):2243-2245. doi: 10.1126/science.1075035

    5. [5]

      CHEN X B, LIU L, YU P Y, MAO S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331(6018):746-750. doi: 10.1126/science.1200448

    6. [6]

      RAZEGHI A, KHODADADI A, ZIAEI-AZADA H, MORTAZAVI Y. Activity enhancement of Cu-doped ceria by reductive regeneration of CuO-CeO2 catalyst for preferential oxidation of CO in H2-rich streams[J]. Chem. Eng. J., 2010,164(1):214-220. doi: 10.1016/j.cej.2010.07.064

    7. [7]

      NAIR J P, WACHTEL E, LUBOMIRSKEY I, FLEIG J, MAIER J. Anomalous expansion of CeO2 nanocrystalline membranes[J]. Adv. Mater., 2003,15(24):2077-2080. doi: 10.1002/adma.200305549

    8. [8]

      YABE S, SATO T. Cerium oxide for sunscreen cosmetics[J]. J. Solid State Chem., 2003,171(1/2):7-11.

    9. [9]

      FAUZI A A, JALIL A A, HASSAN N S, AZAMI M S, HUSSAIN I, SARAVANAN R, VO D V N. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant[J]. Chemosphere, 2022,286131651. doi: 10.1016/j.chemosphere.2021.131651

    10. [10]

      HARON M J, RAHIM F A, ABDULLAH A H, HUSSEIN M Z, KASSIM A. Sorption removal of arsenic by cerium exchanged zeolite P[J]. Mater. Sci. Eng. B, 2008,38(14):204-208.

    11. [11]

      PENG X J, LUAN Z K, DING J, DI Z C, LI Y H, TIAN B H. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water[J]. Mater. Lett., 2005,59(4):399-403. doi: 10.1016/j.matlet.2004.05.090

    12. [12]

      RAICHUR A M, BASU M J. Adsorption of fluoride onto mixed rare earth oxides[J]. Sep. Purif. Technol., 2001,24(1/2):121-127.

    13. [13]

      BAMWENDA G R, ARAKAWA H. Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ce4+ and Fe3+ species[J]. J. Mol. Catal. A-Chem., 2000,161(1/2):105-113.

    14. [14]

      MAO C, ZHAO Y X, QIU X F, ZHU J J, BURDA C. Synthesis, characterization and computational study of nitrogen doped CeO2 nanoparticles with visible-light activity[J]. Phys. Chem. Chem. Phys., 2008,10(36):5633-5638. doi: 10.1039/b805915b

    15. [15]

      SARAVANAKUMAR K, MUTHUPOONGODI S, MUTHURAJ V. A novel n-CeO 2/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation[J]. J. Rare Earths, 2019,37(8):853-860. doi: 10.1016/j.jre.2018.12.009

    16. [16]

      LIU G H, WANG H Y, CHEN D H, DAI C C, ZHANG Z H, FENG Y J. Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO 2/CN heterojunction as photocatalyst[J]. Sep. Purif. Technol., 2020,237116329. doi: 10.1016/j.seppur.2019.116329

    17. [17]

      CASTAÑEDA C, GUTIÉRREZ K, ALVARADO I, MARTÍNEZ J J, ROJAS H, TZOMPANTZI F, GÓMEZ R. Effective phosphated CeO2 materials in the photocatalytic degradation of phenol under UV irradiation[J]. J. Chem. Technol. Biotechnol., 2020,95(12):3213-3220. doi: 10.1002/jctb.6499

    18. [18]

      HAO Y, CHEN S H, WU L M, CHEN R, SUN P C, CHEN T H. Hierarchically porous silica supported ceria and platinum nanoparticles for catalytic combustion of toluene[J]. J. Alloy. Compd., 2021,867159030. doi: 10.1016/j.jallcom.2021.159030

    19. [19]

      ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,293(5528):269-271. doi: 10.1126/science.1061051

    20. [20]

      LI Y X, JIANG Y, PENG S Q, JIANG F Y. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of form-aldehyde under blue light-emitting diodes[J]. J. Hazard. Mater., 2010,182(1/2/3):90-96.

    21. [21]

      LI Y X, XIE C F, PENG S Q, LU G X, LI S B. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[J]. J. Mol. Catal. A-Chem., 2008,282(1/2):117-123.

    22. [22]

      JORGE A B, FRAXEDAS J, CANTARERO A, WILLIAMS A J, RODGERS J, ATTFIELD J P, FUERTES A. Nitrogen doping of ceria[J]. Chem. Mater., 2008,5(20):1682-1684.

    23. [23]

      DIWALD O, THOMPSON T L, GORALSKI E G, WALCK S D, YATES J T. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals[J]. J. Phys. Chem. B, 2004,108(1):52-57.

    24. [24]

      YU H, YE L, ZHANG T Z, ZHOU H, ZHAO T. Synthesis, characterization and immobilization of N-doped TiO2 catalysts by a reformed polymericprecursor method[J]. RSC Adv., 2017,7(25):15265-15271.

    25. [25]

      KIM T H, GO G M, CHO H B, SONG Y, LEE C G, CHO Y H. A novel synthetic method for N doped TiO2 nanoparticles through plasma-assisted electrolysis and photocatalytic activity in the visible region[J]. Front. Chem., 2018,6458.

    26. [26]

      QIU L M, LIU F, ZHAO L Z, MA Y, YAO J N. Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder[J]. Appl. Surf. Sci., 2006,252(14):4931-4935.

    27. [27]

      LIU G, WANG L Z, SUN C H, YAN X X, WANG X W, CHEN Z G, SMITH S C, CHENG H M, LU G Q. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates[J]. Chem. Mater., 2009,21(7):1266-1274.

    28. [28]

      ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,293(5528):269-271.

    29. [29]

      MITORAJ D, KISCH H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light[J]. Angew. Chem. -Int. Edit., 2008,47(51):9975-9978.

    30. [30]

      LIVRAGHI S, PAGANINI M C, GIAMELLO E, SELLONI A, VALENTIN C D, PACCHIONI G. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light[J]. J. Am. Chem. Soc., 2006,128(49):15666-15671.

    31. [31]

      YANG K S, DAI Y, HUANG B B, HAN S H. Theoretical study of N-doped TiO2 rutile crystals[J]. J. Phys. Chem. B, 2006,110(47):24011-24014.

    32. [32]

      SU H, LI J, ZHONG Y, LIU Y, GAO X H, KUANG J, WANG M K, LIN C X, WANG X L, TU J P. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries[J]. Nat. Commun., 2024,154202.

    33. [33]

      ZHANG X, XIONG W P, WANG T, CHAI E C, LIN J, HUANG L T, FENG Y Y, WU M X, WANG Y B. Cascade electrosynthesis of LiTFSI and N-containing analogues via a looped Li-N2 battery[J]. Nat. Catal., 2024,7:55-64.

    34. [34]

      LI S Q, PENG S Q, LI Y X. Constructing an open-structured J-type ZnIn2S4/In(OH)3 heterojunction for photocatalytical hydrogen generation[J]. J. Phys. Chem. Lett., 2024,15(19):5215-5222.

    35. [35]

      ZENG D D, LI Y X. Precisely assembling a CoO cocatalyst onto Tb4O7/CN and Pt-Tb4O7/CN for promoting photocatalytic overall water splitting[J]. Inorg. Chem., 2024,63(18):8397-8407.

  • 加载中
    1. [1]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    15. [15]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    18. [18]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    19. [19]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(0)
  • Abstract views(615)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return