Citation: Mochou GAO, Shan MENG, Jinzhong ZHANG, Wenhua FENG, Shuo DONG, Jianping CHEN, Yanbao ZHAO, Laigui YU, Rongrong YING, Xueyan ZOU. Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431 shu

Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems

Figures(9)

  • Hydroxyapatite nanoparticles (HAP NPs) were synthesized by a one‐step hydrothermal method. The surface of HAP NPs was grafted —SH and —COOH chelating groups via in situ surface‐modification with iminodiacetic acid (IDA) and 3‐mercaptopropyl trimethoxysilane (MPS) to afford dual surface‐capped nano‐amendment HAP‐IDA/MPS. The structure of HAP‐IDA/MPS was characterized, and its adsorption performance for Hg2+, Cu2+, Zn2+, Ni2+, Co2+, and Cd2+ was evaluated. The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg2+, Cu2+, Zn2+, Ni2+, Co2+, and Cd2+ with an initial mass concentration of 20 mg·L-1 reached 13.7 mg·g-1, about 4.3 times as much as that of HAP. Notably, HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg2+, possibly because of its chemical reaction with —SH to form sulfide, possessing the lowest solubility product constant among a variety of metal sulfides.
  • 加载中
    1. [1]

      WANG D F, ZHANG G L, ZHOU L L, WANG M, GAI D Q, WU Z Y. Synthesis of a multifunctional graphene oxide‐based magnetic nanocomposite for efficient removal of Cr(Ⅵ)[J]. Langmuir, 2017,33:7007-7014. doi: 10.1021/acs.langmuir.7b01293

    2. [2]

      BI X Y, MENG S, ZHANG Y, WANG S R, LI H N, MA L X, ZHANG X, ZOU X Y. Study of adsorption capacity and mechanism of nanoalumina for arsenic ion by isothermal adsorption model simulations[J]. Environ. Technol. Innovation, 2024,34103560. doi: 10.1016/j.eti.2024.103560

    3. [3]

      XU H Q, YANG J, SUN Z D, SU J H, LIU Q S, ZHOU Q F, JIANG G B. Environmental pollution, a hidden culprit for health issues[J]. Eco‐Environ. Health, 2022,1:31-45. doi: 10.1016/j.eehl.2022.04.003

    4. [4]

      FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. J. Environ. Manage., 2011,92:407-418. doi: 10.1016/j.jenvman.2010.11.011

    5. [5]

      BINESH U, LIEN C W, CHU H W, HUANG C C. A review on metal nanozyme‐based sensing of heavy metal ions: Challenges and future perspectives[J]. J. Hazard. Mater., 2021,401123397. doi: 10.1016/j.jhazmat.2020.123397

    6. [6]

      LI J F, TIAN J, ZHOU M, TIAN J, MIN Z, JIANG T, LIANG C Y. Research progress on the physiological and molecular mechanisms underlying soybean aluminum resistance[J]. New Crops, 2025,2100034. doi: 10.1016/j.ncrops.2024.100034

    7. [7]

      ZHANG H, WANG W X, LIN C J, FENG X B, SHI J B, JIANG G B, LARSSEN T. Decreasing mercury levels in consumer fish over the three decades of increasing mercury emissions in China[J]. Eco‑ Environ. Health, 2022,1:46-52. doi: 10.1016/j.eehl.2022.04.002

    8. [8]

      YUAN X, LIANG R Q, WANG G, MA S P, LIU N, GONG Y F, MCCOUCH S R, ZHU H T, LIU Z P, LI Z, LIU G F, BU S H, ZHANG G Q, WANG S K. Design of rice with low cadmium accumulation in grain using single segment substitution line[J]. New Crops, 2025,2100035. doi: 10.1016/j.ncrops.2024.100035

    9. [9]

      ISSA M E, MOHAMED C, MOHAMED S. Synthesis and structural characterization of G‐SBA‐IDA, G‐SBA‐EDTA and G‐SBA‐DTPA modified mesoporous SBA‐15 silica and their application for removal of toxic metal ions pollutants[J]. Silicon, 2018,10:981-993. doi: 10.1007/s12633-017-9556-7

    10. [10]

      HUA M, ZHANG S J, PAN B C, ZHANG W M, LV L, ZHANG Q X. Heavy metal removal from water/wastewater by nanosized metal oxides: A review[J]. J. Hazard. Mater., 2012,212:317-331.

    11. [11]

      KUMAR V, PARIHAR R D, SHARMA A, BAKSHI P, SIDHU G P S, BALI A S, KARAOUZAS I, BHARDWAj R, THUKRAL A K, GYASI‐AGYEI Y, RODRIGO‐COMINO J. Global evaluation of heavy metal content in surface water bodies: A meta‐analysis using heavy metal pollution indices and multivariate statistical analyses[J]. Chemosphere, 2019,236124364. doi: 10.1016/j.chemosphere.2019.124364

    12. [12]

      ZHU M Y, WANG J W, YANG X, ZHANG Y, REN H Q, WU B, YE L. A review of the application of machine learning in water quality evaluation[J]. Eco‐Environ. Health, 2022,1:107-116. doi: 10.1016/j.eehl.2022.06.001

    13. [13]

      CAI X, XIA R Z, YE J J, HUANG C C, YANG Y F, ZHANG L K, LIANG B, YANG M, LIN C H, LI P H, HUANG X J. Practical strategy for arsenic(Ⅲ) electroanalysis without modifier in natural water: Triggered by iron group ions in solution[J]. Anal. Chem., 2023,95:4104-4112. doi: 10.1021/acs.analchem.2c04935

    14. [14]

      YU C, ZHU X X, MOHAMED A, DAI K, CAI P, LIU S L, HUANG Q Y, XING B S. Enhanced Cr(Ⅵ) bioreduction by biochar: Insight into the persistent free radicals mediated extracellular electron transfer[J]. J. Hazard. Mater., 2023,442129927. doi: 10.1016/j.jhazmat.2022.129927

    15. [15]

      SULEJMANOVIĆ J, MEMIĆ M, ŠEHOVIĆ E, OMANOVIĆ R, BEGIĆ S, PAZALJA M, AJANOVIĆ A, AZHAR O, SHER F. Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water[J]. Chemosphere, 2022,296133971. doi: 10.1016/j.chemosphere.2022.133971

    16. [16]

      LUAN L P, TANG B T, LIU Y, XU W L, LIU Y F, WANG A L, NIU Y Z. Direct synthesis of sulfur‐decorating PAMAM dendrimer/mesoporous silica for enhanced Hg(Ⅱ) and Cd(Ⅱ) adsorption[J]. Langmuir, 2022,38:698-710. doi: 10.1021/acs.langmuir.1c02547

    17. [17]

      LI N, FU F L, LIU J W, DING Z C, TANG B, PANG J B. Facile preparation of magnetic mesoporous MnFe2O4@SiO2‐CTAB composites for Cr(Ⅵ) adsorption and reduction[J]. Environ. Pollut., 2017,220:1376-1385. doi: 10.1016/j.envpol.2016.10.097

    18. [18]

      ZOU X Y, YIN Y B, ZHAO Y B, CHEN D Y, DONG S. Synthesis of ferriferrous oxide/L‐cysteine magnetic microspheres and their adsorption capacity for Pb(Ⅱ) ions[J]. Mater. Lett., 2015,150:59-61. doi: 10.1016/j.matlet.2015.02.133

    19. [19]

      SOUILAHA O, AKRETCHEA D E, CAMESELLE C. Electroremediation of contaminated soil by heavy metals using ion exchange fibers[J]. Electrochim. Acta, 2012,86:138-141. doi: 10.1016/j.electacta.2012.04.089

    20. [20]

      UNNIKRISHNANA B, LIENA C W, CHUA H W, HUANG C C. A review on metal nanozyme‐based sensing of heavy metal ions: Challenges and future perspectives[J]. J. Hazard. Mater., 2021,401123397. doi: 10.1016/j.jhazmat.2020.123397

    21. [21]

      ZOU X Y, ZHAO Y B, ZHANG Z J. Preparation of hydroxyapatite nanostructures with different morphologies and adsorption behavior on seven heavy metals ions[J]. J. Contam. Hydrol., 2019,226103538. doi: 10.1016/j.jconhyd.2019.103538

    22. [22]

      ÖZVERDI A, ERDEM M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. J. Hazard. Mater., 2006,137:626-632. doi: 10.1016/j.jhazmat.2006.02.051

    23. [23]

      YIN Y B, WEI G M, ZOU X Y, ZHAO Y B. Functionalized hollow silica nanospheres for His‐tagged protein purification[J]. Sensor. Actuat. B, 2015,209:701-705. doi: 10.1016/j.snb.2014.12.049

    24. [24]

      ZOU X Y, ZHANG Y, YUAN J Q, WANG Z B, ZENG R, LI K, ZHAO Y B, ZHANG Z J. A porous nano‐adsorbent with dual functional groups for selective binding proteins with a low detection limit[J]. RSC Adv., 2020,1023270. doi: 10.1039/D0RA01193B

    25. [25]

      TIAN S F, ZOU X Y, LU H T, HE J Y, CHEN D Y, ZHAO Y B, GUO J Y. Synthesis of nanometer hollow silica composite microspheres for affinity separation of protein[J]. Chinese J. Inorg. Chem., 2015,31(7):1329-1334.

    26. [26]

      GAO M C, LIU Q, XUE Y Y, LI B, LIU X C, SHI Z Z, LIU N, ZOU X Y. Facile synthesis of peanut‐like Sn‐doped silica nano‐adsorbent for affinity separation of proteins[J]. RSC Adv., 2022,12:4697-4702. doi: 10.1039/D1RA08362G

    27. [27]

      NEMATIDIL N, NEZAMI S, MIRZAIE F, EBRAHIMI E, SADEGHI M, FARMANI N, SADEGHI H. Fabrication and characterization of a novel nanoporous nanoaerogel based on gelatin as a biosorbent for removing heavy metal ions[J]. J. Sol‐Gel Sci. Technol., 2021,97:721-733. doi: 10.1007/s10971-020-05439-0

    28. [28]

      XENIDIS A, STOURAITI C, PAPASSIOPI N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. J. Hazard. Mater., 2010,177:929-937. doi: 10.1016/j.jhazmat.2010.01.006

    29. [29]

      LIANG J, HAN L, LI B, SHI Z Z, LIU X C, PENG L C, ZOU X Y. Fast and efficient immobilization behavior of bifunctional magnetic nano‐amendment against multi‐heavy metal[J]. Chinese J. Inorg. Chem., 2021,37(11):1981-1990.

    30. [30]

      O' CARROLL D, SLEEP B, KROL M, BOPARAI H, KOCUR C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Adv. Water Resour., 2013,51:104-122. doi: 10.1016/j.advwatres.2012.02.005

    31. [31]

      GAO M C, XU C L, DENG J Y, ZHU T, XIE Z L, ZOU X Y, YANG W S. Proteins platform constructed from biofuctionalized‐magnetized nano‐chitosan for efficient separation of multi‐tagged fusion proteins[J]. Chem. Eng. J., 2024,496:154077-154089. doi: 10.1016/j.cej.2024.154077

    32. [32]

      GAO M C, ZHAO X H, WANG W, ZOU X Y, SONG C P. Preparation of fluorescently and biologically active chain‐like chitosan nanocomposite and its use in separating MBP‐tagged proteins and as fluorescent tracer of tobacco[J]. Sens. Actuators B, 2023,381133371. doi: 10.1016/j.snb.2023.133371

    33. [33]

      WU Y H, ZHANG J F, HE W, LI C C, WANG Y L. Nanomaterials for targeting liver disease: Research progress and future perspectives[J]. Nano Biomed. Eng., 2023,15:199-224. doi: 10.26599/NBE.2023.9290024

    34. [34]

      DU PREEZ H N, HALMA M. Graphene‐based nanomaterials: Uses, environmental fate, and human health hazards[J]. Nano Biomed. Eng., 2024,16:219-231. doi: 10.26599/NBE.2024.9290059

    35. [35]

      SHARMA V, SHARMA J K, KANSAY V, SHARMA V D, SHEORAN R, SINGH M, PAHWA C, SHARMA A, KUMAR S, SHARMA A K, BERA M K. Chloramphenicol and gentamycin‐encapsulated iron oxide nanoparticles as a nanocarrier for antibacterial efficacy via targeted drug delivery[J]. Nano Biomed. Eng., 2023,15:170-178. doi: 10.26599/NBE.2023.9290029

    36. [36]

      GAO M C, LI L X, LIU Q, XUE Y Y, WANG Z H, ZHAO Y B, ZOU X Y. Synthesis of multifunctional silica composite nanospheres and their application in separation of MBP‐tagged protein[J]. Mater. Lett., 2022,318132222. doi: 10.1016/j.matlet.2022.132222

    37. [37]

      XU Y H, ZHAO D Y. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles[J]. Water Res., 2007,41:2101-2108. doi: 10.1016/j.watres.2007.02.037

    38. [38]

      DING W, ZHENG H L, SUN Y J, ZHAO Z W, ZHENG X Y, WU Y Y, XIAO W L. Activation of MnFe2O4 by sulfite for fast and efficient removal of arsenic(Ⅲ) at circumneutral pH: Involvement of Mn(Ⅲ)[J]. J. Hazard Mater., 2021,403123623. doi: 10.1016/j.jhazmat.2020.123623

    39. [39]

      LIU R Q, ZHAO D Y. In situ immobilization of Cu(Ⅱ) in soils using a new class of iron phosphate nanoparticles[J]. Chemosphere, 2007,68:1867-1876. doi: 10.1016/j.chemosphere.2007.03.010

    40. [40]

      WAYCHUNAS G A, KIM C S, BANFIELD J F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms[J]. J. Nanopart Res., 2005,7:409-433. doi: 10.1007/s11051-005-6931-x

    41. [41]

      LIU W, TIAN S T, ZHAO X, XIE W B, GONG Y Y, ZHAO D Y. Application of stabilized nanoparticles for in situ remediation of metal‐contaminated soil and groundwater: A critical review[J]. Curr. Pollution Rep., 2015,1:280-291. doi: 10.1007/s40726-015-0017-x

    42. [42]

      ZOU Y D, WANG X X, KHAN A, WANG P G, LIU Y H, ALSAEDI A, HAYAT T, WANG X K. Environmental remediation and application of nanoscale zero‐valent iron and its composites for the removal of heavy metal ions: A review[J]. Environ. Sci. Technol., 2016,50:7290-7304. doi: 10.1021/acs.est.6b01897

    43. [43]

      ZOU X Y, ZHAO Y B, ZHANG Z J. A facile method to prepare hydroxyapatite nanotubes and immobilization activities against heavy metal ions in solutions[J]. Chinese J. Inorg. Chem., 2020,36(4):747-754.

    44. [44]

      ZOU X Y, LI K, ZHAO Y B, ZHANG Y, LI B J, SONG C P. Ferroferric oxide/L‐cysteine magnetic nanospheres for capturing histidine‐tagged proteins[J]. J. Mater. Chem. B, 2013,1:5108-5113. doi: 10.1039/c3tb20726a

    45. [45]

      JIN T, KURDYLA D, HRAPOVIC S, LEUNG A C W, REGNIER S, LIU Y L, MOORES A, LAM E. Carboxylated chitosan nanocrystals: A synthetic route and application as superior support for gold‑ catalyzed reactions[J]. Biomacromolecules, 2020,21:2236-2245. doi: 10.1021/acs.biomac.0c00201

  • 加载中
    1. [1]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    2. [2]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    3. [3]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    4. [4]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    5. [5]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    6. [6]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    7. [7]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    8. [8]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    9. [9]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    12. [12]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    13. [13]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    14. [14]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    15. [15]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    16. [16]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    17. [17]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    18. [18]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    19. [19]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    20. [20]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return