Citation: Ruolin CHENG, Yue WANG, Xiyao NIU, Huagen LIANG, Ling LIU, Shijian LU. Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424 shu

Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites

Figures(8)

  • Converting CO2 into cyclic carbonates, a process with 100% atom efficiency, offers a promising route for carbon utilization, yet it is hindered by harsh reaction conditions (high temperature/pressure). To provide a cost- effective, high-efficiency catalyst design strategy for sustainable CO2 conversion, oxygen-vacancy-rich defective tungsten oxide (W18O49)/reduced graphene oxide (rGO) composites were constructed via an in-situ solvothermal method. Comprehensive characterization confirmed its structural integrity and defect-rich nature. The W18O49/rGO composite exhibited exceptional photothermal catalytic activity for CO2 cycloaddition under ambient conditions, achieving a 95% styrene carbonate yield (173 mmol·g-1·h-1) with excellent cycling stability. The integration of rGO enhances the CO2 adsorption, broadens the light absorption, and facilitates charge transfer efficiency. The coupling effect of photocatalysis and thermal catalysis significantly improves the catalytic performance.
  • 加载中
    1. [1]

      SURI D, DAS S, CHOUDHARY S, VENKANNA G, SHARMA B, AFROZ M A, TAILOR N K, JOSHI R, SATAPATHI S, TRIPATHI K. Enigma of sustainable CO2 conversion to renewable fuels and chemicals through photocatalysis, electrocatalysis, and photoelectrocatalysis: Design strategies and atomic level insights[J]. Small, 2025, 21(8): 2408981  doi: 10.1002/smll.202408981

    2. [2]

      FENG Y, YAO J F. Photo-driven CO2 conversion into cyclic carbonates[J]. Sep. Purif. Technol., 2024, 356: 130027

    3. [3]

      CHENG R L, REN J, WANG H R, LIANG H G, TSIAKARAS P. Photo-induced CO2 cycloaddition and tetracycline degradation over novel FeOx modified defective graphitic carbon nitride composite[J]. Appl. Catal. B–Environ., 2024, 352: 124024  doi: 10.1016/j.apcatb.2024.124024

    4. [4]

      SHEN Q Y, CHEN W R, WANG M, JIN X X, ZHANG L X, SHI J L. A MOF@MOF S-scheme heterojunction with Lewis acid-base sites synergistically boosts cocatalyst‑free CO2 cycloaddition[J]. ChemSusChem, 2024, 18(2): e202401362

    5. [5]

      LIANG J X, JIANG X, ZHANG X R, YU H, SHI J J, WANG M. Co-porphyrin-based metal-organic framework for light-driven efficient green conversion of CO2 and epoxides[J]. Chem. Eng. J., 2024, 499: 156428  doi: 10.1016/j.cej.2024.156428

    6. [6]

      ZHANG H G, ZHAI G Y, LEI L F, ZHANG C Y, LIU Y Y, WANG Z Y, CHENG H F, ZHENG Z K, WANG P, DAI Y, HUANG B B. Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework[J]. J. Colloid Interface Sci., 2022, 625: 33-41  doi: 10.1016/j.jcis.2022.05.146

    7. [7]

      HE Y Z, XU M S, XIA J H, ZHANG C H, SONG X T, ZHAO X F, FU M, LI S Q, LIU X Y. Effect of exposed active sites of semi-amorphous Fe-BTC on photocatalytic CO2 cycloaddition reaction under ambient conditions[J]. Mol. Catal., 2023, 542: 113134  doi: 10.1016/j.mcat.2023.113134

    8. [8]

      CHENG R L, WANG H R, REN J, MA Y Y, LIANG H G. Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst[J]. Chinese J. Inorg. Chem., 2024, 40(3): 523-532  doi: 10.11862/CJIC.20230349

    9. [9]

      CHENG R L, JIN X X, FAN X Q, WANG M, TIAN J J, ZHANG L X, SHI J L. Incorporation of N-doped reduced graphene oxide into pyridine-copolymerized g-C3N4 for greatly enhanced H2 photocatalytic evolution[J]. Acta Phys.‒Chim. Sin., 2017, 33(7): 1436-1445

    10. [10]

      SHA M S, ANWAR H, MUSTHAFA F N, AL-LOHEDAN H, ALFARWATI S, RAJABATHAR J R, ALAHMAD J K, CABIBIHAN J J, KARNAN M, SADASIVUNI K K. Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)[J]. Sci. Rep., 2024, 14(1): 360810

    11. [11]

      DONG S Y, ZHAO Y L, YANG J Y, LIU X D, LI W, ZHANG L Y, WU Y H, SUN J H, FENG J L, ZHU Y F. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation[J]. Appl. Catal. B‒Environ., 2021, 291: 120127  doi: 10.1016/j.apcatb.2021.120127

    12. [12]

      CHENG R L, STEELE J A, ROEFFAERS M B J, HOFKENS J, DEBROYE E. Dual-channel charge carrier transfer in CsPbX3 perovskite/W18O49 composites for selective photocatalytic benzyl alcohol oxidation[J]. ACS Appl. Energ. Mater., 2021, 4(4): 3460-3468  doi: 10.1021/acsaem.0c03215

    13. [13]

      BIBI S, AHMAD A, ANJUM M A R, HALEEM A, SIDDIQ M, SHAH S S, AI KAHTANI A. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation[J]. J. Environ. Chem. Eng., 2021, 9(4): 105580  doi: 10.1016/j.jece.2021.105580

    14. [14]

      LUO Z R, LI D D, TAN S Z, HUANG L H. Preparation and oil-water separation of 3D kapok fiber-reduced graphene oxide aerogel[J]. J. Chem. Technol. Biotechnol., 2020, 95(3): 639-648  doi: 10.1002/jctb.6245

    15. [15]

      ZHANG S, ZHANG H, CAO F X, MA Y Y, QU Y Q. Catalytic behavior of graphene oxides for converting CO2 into cyclic carbonates at one atmospheric pressure[J]. ACS Sustain. Chem. Eng., 2018, 6(3): 4204-4211  doi: 10.1021/acssuschemeng.7b04600

    16. [16]

      ZHANG N, JALIL A, WU D X, CHEN S M, LIU Y F, GAO C, YE W, QI Z M, JU H X, WANG C M, WU X J, SONG L, ZHU J F, XIONG Y J. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. J. Am. Chem. Soc., 2018, 140(30): 9434-9443  doi: 10.1021/jacs.8b02076

    17. [17]

      ZHANG X L, HUANG W, XIA Z X, XIAN M, BU F, LIANG F B, FENG D X. One-pot synthesis of S-scheme WO3/BiOBr heterojunction nanoflowers enriched with oxygen vacancies for enhanced tetracycline photodegradation[J]. Sep. Purif. Technol., 2022, 290: 120897  doi: 10.1016/j.seppur.2022.120897

    18. [18]

      ZHAI G Y, LIU Y Y, LEI L F, WANG J J, WANG Z Y, ZHENG Z K, WANG P, CHENG H F, DAI Y, HUANG B B. Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a Bi-based metal-organic framework[J]. ACS Catal., 2021, 11(4): 1988-1994  doi: 10.1021/acscatal.0c05145

    19. [19]

      JIANG B, ZHANG C C, YANG N, ZHOU Q, ZHANG L F, LI J S, YANG W, YANG X D, ZHANG L H. 2D/2D ZIF-L-derived Znδ+ (0≤δ≤2) and N codoped carbon skeleton@ZnIn2S4 S-scheme heterojunction for solar-driven CO2 cycloaddition[J]. ACS Sustain. Chem. Eng., 2024, 12(17): 6584-6595  doi: 10.1021/acssuschemeng.3c08407

    20. [20]

      GONG X Q, ZHANG Y J, XU Y Y, ZHAI G Y, LIU X L, BAO X L, WANG Z Y, LIU Y Y, WANG P, CHENG H F, FAN Y C, DAI Y, ZHENG Z K, HUANG B B. Synergistic effect between CO2 chemisorption using amino-modified carbon nitride and epoxide activation by high-energy electrons for plasmon-assisted synthesis of cyclic carbonates[J]. ACS Appl. Mater. Interfaces, 2022, 14(45): 51029-51040  doi: 10.1021/acsami.2c16382

    21. [21]

      KHALID A, RAZZAQ Z, AHMAD P, AL-ANZI B S, REHMAN F, MUHAMMAD S, KHANDAKER M U, ALBASHER G, ALSULTAN N, LIAQAT I, HAYAT D. Visible-light promoted chemical fixation of carbon dioxide with epoxide into cyclic carbonates over S-scheme CdS-CeO2 photocatalyst[J]. Mater. Sci. Semicond. Process, 2023, 165: 107649  doi: 10.1016/j.mssp.2023.107649

    22. [22]

      JING S Y, REN J, WANG A H, CHENG R L, LIANG H G, LIU H, CHEN F, TSIAKARAS P. An efficient photo-Fenton In2O3@FeIn2S4 composite catalyst for tetracycline degradation[J]. Chem. Eng. J., 2024, 491: 151549  doi: 10.1016/j.cej.2024.151549

    23. [23]

      CHENG R L, WANG A H, SANG S X, LIANG H G, LIU S Q, TSIAKARAS P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: An economic and ecofriendly choice[J]. Chem. Eng. J., 2023, 466: 142982  doi: 10.1016/j.cej.2023.142982

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Jingping Li Suding Yan Jiaxi Wu Qiang Cheng Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Jianan Hong Chenyu Xu Yan Liu Changqi Li Menglin Wang Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

    11. [11]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(2)
  • Abstract views(9)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return