Citation: Yuecheng ZHANG, Fan YANG, Shiyu ZHANG, Chengjun MA, Rui TIAN, Xuehua SUN, Haoyu LI, Lingbo SUN, Hongyan MA. B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415 shu

B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing

Figures(7)

  • In this study, boric and benzoic acid (BZA) were used as precursors to synthesize boron- doped room-temperature phosphorescent carbon quantum dots (B - CQDs - BZA) through a one-step pyrolysis process. The morphology, structure, and luminescent properties of B-CQDs-BZA were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy absorption, fluorescence, and phosphorescence spectroscopy. The results demonstrated that the synthesized B-CQDs-BZA primarily consisted of amorphous carbon, with a particle size ranging from 2.0 to 4.5 nm. Upon irradiation with ultraviolet light at 254 or 302 nm, B-CQDs-BZA exhibited a blue phosphorescence signal that persisted for up to 20 s, with a measured lifetime as long as 2.09 s. This method is simple, rapid, and universally applicable, enabling the synthesis of room - temperature phosphorescent CQDs from diverse precursor materials. Leveraging the exceptional room-temperature phosphorescence lifetime of B-CQDs-BZA, these materials can be effectively employed in time - resolved anti - counterfeiting and information encryption. Moreover, based on the quenching effect of water on B-CQDs-BZA, these materials can be further utilized for determining environmental humidity.
  • 加载中
    1. [1]

      SHI H F, YAO W, YE W P, MA H L, HUANG W, AN Z F. Ultralong organic phosphorescence: From material design to applications[J]. Accounts Chem. Res., 2022,55(23):3445-3459. doi: 10.1021/acs.accounts.2c00514

    2. [2]

      ZHANG C P, JIAO Y, ZHAO D, XIAO X C. Carbon quantum dots with photo-induced enzyme activity and room-temperature phospho-rescence and their application in drug analysis and anticounterfeiting[J]. Carbon, 2025,235(10)120083.

    3. [3]

      LUO X F, TIAN B, ZHAI Y X, GUO H D, LIU S X, LI J, LI S J, JAMES T D, CHEN Z J. Room-temperature phosphorescent materials derived from natural resources[J]. Nat. Rev. Chem., 2023,7(11):800-812. doi: 10.1038/s41570-023-00536-4

    4. [4]

      OGOSHI H, ITO S, TANAKA K. Synthesis, characterization, and pho-toluminescence properties of boron tropolonate complexes: From fluorescence to room temperature phosphorescence[J]. Bull. Chem. Soc. Jpn., 2023,96(5):452-460. doi: 10.1246/bcsj.20230058

    5. [5]

      ZHI J H, ZHOU Q, SHI H F, AN Z F, HUANG W. Organic room temperature phosphorescence materials for biomedical applications[J]. Chem. Asian J., 2020,15(7):947-957. doi: 10.1002/asia.201901658

    6. [6]

      WANG H Y, ZHOU L, YU H M, TANG X D, XING C, NIE G C, AKAFZADE H, WANG S Y, CHEN W. Exploration of room-temperature phosphorescence and new mechanism on carbon dots in a polyacrylamide platform and their applications for anti-counterfeiting and information encryption[J]. Adv. Opt. Mater, 2022,10(15)2200678. doi: 10.1002/adom.202200678

    7. [7]

      ZHANG X P, LIU J K, CHEN B, HE X W, LI X Y, WEI P F, GAO P F, ZHANG G Q, LAM J W Y, TANG B Z. Highly efficient and persistent room temperature phosphorescence from cluster exciton enables ultrasensitive off-on VOC sensing[J]. Matter, 2022,5(10):3499-3512. doi: 10.1016/j.matt.2022.07.010

    8. [8]

      ZHAO W J, HE Z K, TANG B Z. Room-temperature phosphorescence from organic aggregates[J]. Nat. Rev. Mater., 2020,5(12):869-885. doi: 10.1038/s41578-020-0223-z

    9. [9]

      GUO J J, YANG C L, ZHAO Y L. Long-lived organic room-temperature phosphorescence from amorphous polymer systems[J]. . Accounts Chem. Res., 2022,55(8):1160-1170. doi: 10.1021/acs.accounts.2c00038

    10. [10]

      GE G P, WEI C D, LI C Y, LIANG Y X, LAING H Z. Syntheses, crystal structures and photophysical properties of a blue phosphorescent iridium (Ⅲ) pyrimidine complex[J]. . Chinese J. Inorg. Chem., 2015,31(4):666-672.

    11. [11]

      ZHANG Y C, LI C J, SUN L B, ZHANG J, YANG X J, MA H Y. Defects coordination triggers redshifted photoluminescence in carbon dots and their application in ratiometric Cr (Ⅵ) sensing[J]. Microchem. J., 2021,169106552. doi: 10.1016/j.microc.2021.106552

    12. [12]

      WANG B Y, LU S Y. The light of carbon dots: From mechanism to applications[J]. Matter, 2022,5(1):110-49. doi: 10.1016/j.matt.2021.10.016

    13. [13]

      DONG M H, LI F, XU Y J, DONG Y C, LI M H, KONG C L, CHEN X Y, YANG J Y, SUN J Y. Phosphorescent carbon dots powder: Syn-thesis and application in anti-background interference latent fingerprint imaging[J]. . Chinese J. Inorg. Chem., 2023,39(8):1527-1535.

    14. [14]

      LONG C C, JIANG Z X, SHANGGUAN J F, QING T P, ZHANG P, FENG B. Applications of carbon dots in environmental pollution control: A review[J]. Chem. Eng. J., 2021,406126848. doi: 10.1016/j.cej.2020.126848

    15. [15]

      MA J, SUN L B, GAO F, ZHANG S Y, ZHANG Y H, WANG Y X, ZHANG Y C, MA H Y. A review of dual-emission carbon dots and their applications[J]. . Molecules, 2023,28(24)8134. doi: 10.3390/molecules28248134

    16. [16]

      WU Q, WANG L, YAN Y, LI S, YU S T, WANG J G, HUANG L. Chitosan - derived carbon dots with room - temperature phosphores-cence and energy storage enhancement properties[J]. ACS Sustain. Chem. Eng., 2022,10(9):3027-3036. doi: 10.1021/acssuschemeng.1c08299

    17. [17]

      CHENG M M, CAO L, GUO H Z, DONG W F, LI L. Green synthesis of phosphorescent carbon dots for anticounterfeiting and information encryption[J]. Sensors, 2022,22(8)2944. doi: 10.3390/s22082944

    18. [18]

      ZHANG S Y, MA H Y, SUN L B, LI M, ZHANG Y R, MA J, WANG Y X, ZHANG Y C. A simple and universal approach to synthesizing multi-confined carbon dots with thermally activated delayed fluorescence[J]. J. Fluoresc., 2024:1-10.

    19. [19]

      WEN X P, SHEN L J, LI J H, GAO X L, LI Y K, ZHANG X, LV J Y. Nitrogen-doped fluorescent carbon dots are used for ultra-sensitive detection of Co2+ and cell imaging[J]. . Chinese J. Inorg. Chem., 2023,39(8):1471-1480.

    20. [20]

      ZHANG Y C, SUN L B, LI C J, MA J, ZHANG S Y, WANG Q Q, MA H Y. A simple and accurate ratiometric sensor for determination of dopamine based on dual-emission carbon dots[J]. Anal. Sci., 2024,40:1023-1030. doi: 10.1007/s44211-023-00492-5

    21. [21]

      LI Q J, LI Y C, MENG S A, YANG J, QIN Y K, TAN J, QU S N. Achieving 46% efficient white-light emissive carbon dot-based mate-rials by enhancing phosphorescence for single-component white-light-emitting diodes[J]. J. Mater. Chem. C, 2021,9(21):6796-6801. doi: 10.1039/D1TC01001H

    22. [22]

      LI W, ZHOU W, ZHOU Z S, ZHANG H R, ZHANG X J, ZHUANG J L, LIU Y L, LEI B F, HU C F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J]. Angew. Chem.?Int. Edit., 2019,58(22):7278-7283. doi: 10.1002/anie.201814629

    23. [23]

      Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights[J]. Angew. Chem.?Int. Edit., 2010(38):6726-6744.

    24. [24]

      WANG D H, LU Z D, QIN X M, ZHANG Z, SHI Y E, LAM J W Y, WANG Z G, TANG B Z. Boric acid - activated room - temperature phosphorescence and thermally activated delayed fluorescence for efficient solid-state photoluminescence materials[J]. Adv. Opt. Mater., 2022,10(18)2200629.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    6. [6]

      Yihan XueXue HanJie ZhangXiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    8. [8]

      Wenlong Wang Wentao Hao Lang He Jia Qiao Ning Li Chaoqiu Chen Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-. doi: 10.1016/j.actphy.2025.100116

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Qianli Ma Tianbing Song Tianle He Xirong Zhang Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-. doi: 10.1016/j.actphy.2025.100106

    15. [15]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    16. [16]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    17. [17]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    18. [18]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    19. [19]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    20. [20]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return