Research progress on the application of laser synthesis technology for electrochemical functional materials
- Corresponding author: Nan WANG, wangnan@bhu.edu.cn Kedi CAI, caikedihit@bhu.edu.cn
Citation:
Tinghui AN, Dong XIANG, Jiaqi LI, Jiawei WANG, Shuming YU, Nan WANG, Kedi CAI. Research progress on the application of laser synthesis technology for electrochemical functional materials[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1731-1754.
doi:
10.11862/CJIC.20240412
XU X J. Sixty years of high energy lasers: Review and prospects[J]. High Power Laser and Particle Beams, 2020, 32(1): 30-34
BIAN J, ZHOU L B Y, WAN X D, ZHU C, YANG B, HUANG Y A. Laser transfer, printing, and assembly techniques for flexible electronics[J]. Adv. Electron. Mater., 2019, 5(7): 1800900
doi: 10.1002/aelm.201800900
PALNEEDI H, PARK J H, MAURYA D, PEDDIGARI M, HWANG G T, ANNAPUREDDY V, KIM J W, CHOI J J, HAHN B D, PRIYA S, LEE K J, RYU J. Laser irradiation of metal oxide films and nanostructures: Applications and advances[J]. Adv. Mater., 2018, 30(14): 1705148
doi: 10.1002/adma.201705148
HONG S, LEE H, YEO J, KO S H. Digital selective laser methods for nanomaterials: From synthesis to processing[J]. Nano Today, 2016, 11(5): 547-564
doi: 10.1016/j.nantod.2016.08.007
YANG C, HUANG Y X, CHENG H H, JIANG L, QU L T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators[J]. Adv. Mater., 2019, 31(2): 1805705
doi: 10.1002/adma.201805705
SAPRA N V, YANG K Y, VERCRUYSSE D, LEEDLE K J, BLACK D S, ENGLAND R J, SU L, TRIVEDI R, MIAO Y, SOLGAARD O, BYER R L, VUČKOVIĆ J. On-chip integrated laser-driven particle accelerator[J]. Science, 2020, 367(6473): 79-83
doi: 10.1126/science.aay5734
SERGEEV A A, PAVLOV D V, KUCHMIZHAK A A, LAPINE M V, YIU W K, DONG Y, KE N, JUODKAZIS S, ZHAO N, KERSHAW S V, ROGACH A L. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays[J]. Light‒Sci. Appl., 2020, 9(1): 16
ZHAO L L, LIU Z, CHEN D, LIU F, YANG Z Y, LI X, YU H H, LIU H, ZHOU W J. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano‒Micro Lett., 2021, 13(1): 49
Research Group of Strategic Research on China′s Laser Technology and Its Application by 2035. Strategic research on China′s laser technology and its application by 2035[J]. Strategic study of CAE, 2020, 22(3): 1-6
XIA S D, ZHOU G Y, FAN L. New carbon dioxide laser power supply design based on SG3525[J]. Microprocessor, 2014, 35(5): 59-62
LI H Q. Principle of semiconductor laser and its application[J]. Telecomm Power Technology, 2022, 39(10): 89-91
MALLEVILLE M A, DAULIAT R, BENO T A, LECONTE B, DARWICH D, JEU R D, JAMIER R, SCHUSTER K, ROY P. Experimental study of the mode instability onset threshold in high-power FA-LPF lasers[J]. Opt. Lett., 2017, 42(24): 5230-5233
doi: 10.1364/OL.42.005230
BOYD G D, GORDON J P. Confocal multimode resonator for millimeter through optical wavelength masers[J]. The Bell System Technical Journal, 1961, 40(2): 489-508
doi: 10.1002/j.1538-7305.1961.tb01626.x
ZHANG Q L, XU J, ZHANG L, TIAN Z Y, MIAO Y, GAO X M. Tunable laser mode evolution principle by modulated gas laser resonator[J]. Optik, 2019, 186: 241-252
doi: 10.1016/j.ijleo.2019.04.080
JOE D J, KIM S, PARK J H, PARK D Y, LEE H E, IM T H, CHOI I, RUOFF R S, LEE K J. Laser-material interactions for flexible applications[J]. Adv. Mater., 2017, 29(26): 1606586
doi: 10.1002/adma.201606586
ATTALLAH A H, ABDULWAHID F S, ALI Y A, HAIDER A J. Effect of liquid and laser parameters on fabrication of nanoparticles via pulsed laser ablation in liquid with their applications: A review[J]. Plasmonics, 2023, 18(4): 1307-1323
doi: 10.1007/s11468-023-01852-7
NASER H, SHANSHOOL H M, IMHAN K I. Parameters affecting the size of gold nanoparticles prepared by pulsed laser ablation in liquid[J]. Braz. J. Phys., 2021, 51(3): 878-898
doi: 10.1007/s13538-021-00875-x
LI L, ZHANG J Y, WANG Y Y, ZAMAN F U, ZHANG Y M, HOU L R, YUAN C Z. Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges[J]. InfoMat, 2021, 3(12): 1393-1421
doi: 10.1002/inf2.12218
GAO K, WANG B, TAO L, CUNNING B V, ZHANG Z P, WANG S Y, RUOFF R S, QU L T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping[J]. Adv. Mater., 2019, 31(13): 1805121
doi: 10.1002/adma.201805121
PAUL R, DU F, DAI L M, DING Y, WANG Z L, WEI F, ROY A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices[J]. Adv. Mater., 2019, 31(13): 1805598
doi: 10.1002/adma.201805598
YE R Q, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Adv. Mater., 2019, 31(1): 1803621
doi: 10.1002/adma.201803621
HOPULELE I, AXINTE M, NEJNERU C. Alloys with acoustic properties[J]. Appl. Mech. Mater., 2014, 657: 417-421
doi: 10.4028/www.scientific.net/AMM.657.417
GENNES P G, PINCUS P A. Superconductivity of metals and alloys[M]. Oxfordshire: Taylor & Francis, 2018: 1-274
TAKATA N, LEE S H, TSUJI N. Ultrafine grained copper alloy sheets having both high strength and high electric conductivity[J]. Mater. Lett., 2009, 63: 1757-1760
doi: 10.1016/j.matlet.2009.05.021
BOLEY J W, WHITE E L, KRAMER R K. Mechanically sintered gallium-indium nanoparticles[J]. Adv. Mater., 2015, 27(14): 2355-2360
doi: 10.1002/adma.201404790
SINGH A K, XU Q. Synergistic catalysis over bimetallic alloy nanoparticles[J]. ChemCatChem, 2013, 5(3): 652-676
doi: 10.1002/cctc.201200591
MA R Q, JIANG H Q, WANG C, ZHAO C B, DENG H X. Multivariate MOFs for laser writing of alloy nanoparticle patterns[J]. Chem. Commun., 2020, 56(18): 2715-2718
doi: 10.1039/C9CC09144K
LIN Z, YUE J, LIANG L, TANG B, LIU B, REN L, LI Y, JIANG L L. Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water[J]. Appl. Surf. Sci., 2020, 504: 144461
doi: 10.1016/j.apsusc.2019.144461
WANG B, WANG C, YU X W, CAO Y, GAO L F, WU C P, YAO Y F, LIN Z Q, ZOU Z G. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds[J]. Nat. Synth., 2022, 1(2): 138-146
doi: 10.1038/s44160-021-00004-1
JIANG H Q, TONG L, LIU H D, XU J, JIN S Y, WANG C, HU X J, YE L, DENG H X, CHENG G J. Graphene-metal-metastructure monolith via laser shock-induced thermochemical stitching of MOF crystals[J]. Matter, 2020, 2(6): 1535-1549
doi: 10.1016/j.matt.2020.03.003
CASTELLANOS-GOMEZ A, BARKELID M, GOOSSENS A M, CALADO V E, VAN DER ZANT H S J, STEELE G A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor[J]. Nano Lett., 2012, 12(6): 3187-3192
doi: 10.1021/nl301164v
ZHU D Z, QIAO M, YAN J F, XIE J W, GUO H, DENG S F, HE G Z, ZHAO Y Z, LUO M. Three-dimensional patterning of MoS2 with ultrafast laser[J]. Nanoscale, 2023, 15(36): 14837-14846
doi: 10.1039/D3NR01669B
ZHANG H F, TU X, WU Z Y, GUO J Q, FEI L F, LIAO X X, YUAN J R, WAN S Y, BIE Y Q, ZHOU Y B. Laser irradiation induced structural transformation in layered transition metal trichalcogenide nanoflakes[J]. iScience, 2023, 26(10): 107895
doi: 10.1016/j.isci.2023.107895
LIU X Y, ZHANG T, XU M C, LI Y, WANG H Q, CHEN Y K, ZHANG X Z H, WANG Z N, LI X Y, ZHOU W J, LIU H. Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria[J]. Nano Res., 2024, 17(3): 1578-1584
doi: 10.1007/s12274-023-5954-x
LI G Q. Design and development of a lens-walled compound parabolic concentrator-A review[J]. J. Therm. Sci., 2019, 28(1): 17-29
doi: 10.1007/s11630-019-1083-3
KWAK B S, CHAE J, KANG M. Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production[J]. Appl. Energy, 2014, 125: 189-196
doi: 10.1016/j.apenergy.2014.03.012
KAUR G, KULKARNI A P, GIDDEY S, BADWAL S P S. Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells[J]. Appl. Energy, 2018, 221: 131-138
doi: 10.1016/j.apenergy.2018.03.176
BOLTON J R. Photochemical conversion and storage of solar energy[J]. J. Solid State Chem., 1977, 22(1): 3-8
doi: 10.1016/0022-4596(77)90183-9
WALLACE C, GRIFFITHS K, DALE B L, ROBERTS S, PARSONS J, GRIFFIN J M, GÖRTZ V. Understanding solid-state photochemical energy storage in polymers with azobenzene side groups[J]. ACS Appl. Mater. Interfaces, 2023, 15(26): 31787-31794
doi: 10.1021/acsami.3c04631
BÜRGIN T, OGAWA T, WENGER O S. Better covalent connection in a molecular triad enables more efficient photochemical energy storage[J]. Inorg. Chem., 2023, 62(33): 13597-13607
doi: 10.1021/acs.inorgchem.3c02008
LI N B, YANG D J, SHAO Y, LIU Y T, TANG J B, YANG L P, SUN T Y, ZHOU W I, LIU H, XUE G B. Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion[J]. ACS Appl. Mater. Interfaces, 2021, 13(3): 4305-4315
doi: 10.1021/acsami.0c17584
LIU X Y, XING C S, YANG F, LIU Z, WANG Y J, DONG T J, ZHAO L L, LIU H, ZHOU W J. Strong interaction over Ru/defects-rich aluminium oxide boosts photothermal CO2 methanation via microchannel flow-type system[J]. Adv. Energy Mater., 2022, 12(31): 2201009
doi: 10.1002/aenm.202201009
POMERANTSEVA E, BONACCORSO F, FENG X L, CUI Y, GOGOTSI Y. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285
doi: 10.1126/science.aan8285
CHANG L, HU Y H. Breakthroughs in designing commercial-level mass-loading graphene electrodes for electrochemical double-layer capacitors[J]. Matter, 2019, 1(3): 596-620
doi: 10.1016/j.matt.2019.06.016
XU R, CHENG X B, YAN C, ZHANG X Q, XIAO Y, ZHAO C Z, HUANG J Q, ZHANG Q. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344
doi: 10.1016/j.matt.2019.05.016
WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J]. Sci. Adv., 2017, 3(12): eaap9252
doi: 10.1126/sciadv.aap9252
FANG Y J, YU X Y, LOU X W. Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter, 2019, 1(1): 90-114
doi: 10.1016/j.matt.2019.05.007
HAO M M, BAI Y, ZEISKE S, REN L, LIU J X, YUAN Y B, ZARRABI N, CHENG N Y, GHASEMI M, CHEN P, LYU M Q, HE D X, YUN J H, DU Y, WANG Y, DING S S, ARMIN A, MEREDITH P, LIU G, CHENG H M, WANG L Z. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation[J]. Nat. Energy, 2020, 5(1): 79-88
doi: 10.1038/s41560-019-0535-7
LIANG H F, MING F W, ALSHAREEF H N. Excellence in energy: Applications of plasma in energy conversion and storage materials[J]. Adv. Energy Mater., 2018, 8(29): 1870126
doi: 10.1002/aenm.201870126
HU H, LI Q, LI L Q, TENG X L, FENG Z X, ZHANG Y L, WU M B, QIU J S. Laser irradiation of electrode materials for energy storage and conversion[J]. Matter, 2020, 3(1): 95-126
doi: 10.1016/j.matt.2020.05.001
ROGELJ J, DEN ELZEN M, HÖHNE N, FRANSEN T, FEKETE H, WINKLER H, SCHAEFFER R, SHA F, RIAHI K, MEINSHAUSEN M. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7609): 631-639
doi: 10.1038/nature18307
HUANG L, ZAMAN S, TIAN X L, WANG Z T, FANG W S, XIA B Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells[J]. Accouts Chem. Res., 2021, 54(2): 311-322
doi: 10.1021/acs.accounts.0c00488
BHARDWAJ S, BISWAS A, DAS M, DEY R S. Nanostructured Cu foam and its derivatives: Emerging materials for the heterogeneous conversion of CO2 to fuels[J]. Sustain. Energ. Fuels, 2021, 5(9): 2393-2414
doi: 10.1039/D1SE00085C
ASHOK J, PATI S, HONGMANOROM P, TIAN X Z, JUN M C, KAWI S. A review of recent catalyst advances in CO2 methanation processes[J]. Catal. Today, 2020, 356: 471-489
doi: 10.1016/j.cattod.2020.07.023
BHALOTHIA D, KRISHNIA L, YANG S S, YAN C, HSIUNG W H, WANG K W, CHEN T Y. Recent advancements and future prospects of noble metal-based heterogeneous nanocatalysts for oxygen reduction and hydrogen evolution reactions[J]. Appl. Sci. ‒Basel, 2020, 10(21): 7708
doi: 10.3390/app10217708
ZHANG H X, WANG P F, YAO C G, CHEN S P, CAI K D, SHI F N. Recent advances of ferro-/piezoelectric polarization effect for dendrite-free metal anodes[J]. Rare Met., 2023, 42(8): 2516-2544
doi: 10.1007/s12598-023-02319-8
BHALOTHIA D, HSIUNG W H, YANG S S, YAN C, CHEN P C, LIN T H, WU S C, CHEN P C, WANG K W, LIN M W, CHEN T Y. Submillisecond laser annealing induced surface and subsurface restructuring of Cu-Ni-Pd trimetallic nanocatalyst promotes thermal CO2 Reduction[J]. ACS Appl. Energy Mater., 2021, 4(12): 14043-14058
doi: 10.1021/acsaem.1c02823
DONG T J, LIU X Y, TANG Z F, YUAN H F, JIANG D, WANG Y J, LIU Z, ZHANG X L, HUANG S F, LIU H, ZHAO L L, ZHOU W J. Ru decorated TiOx nanoparticles via laser bombardment for photothermal co-catalytic CO2 hydrogenation to methane with high selectivity[J]. Appl. Catal. B‒Environ., 2023, 326: 122176
doi: 10.1016/j.apcatb.2022.122176
BIN C, YUAN H F, LI L, YU J Y, LIU X Y, YU W Q, WANG B, ZHAO L L, LIU X Y, SUN S H, LIU H, ZHOU W J. Enhancing electrochemical nitrogen fixation by mimicking π back-donation on laser-tuned Lewis acid sites in noble-metal-molybdenum carbide[J]. Appl. Catal. B‒Environ., 2023, 320: 121777
doi: 10.1016/j.apcatb.2022.121777
WANG Y J, CHEN Y K, ZHAO Y W, YU J Y, LIU Z, SHI Y J, LIU H, LI X, ZHOU W J. Laser-fabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate[J]. Appl. Catal. B‒Environ., 2022, 307: 120991
doi: 10.1016/j.apcatb.2021.120991
SHI Y J, WANG Y J, YU J Y, CHEN Y K, FANG C Q, JIANG D, ZHANG Q H, GU L, YU X W, LI X, LIU H, ZHOU W J. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid[J]. Adv. Energy Mater., 2023, 13(13): 2203506
doi: 10.1002/aenm.202203506
ZHU M N, JIANG H Q, ZHANG B W, GAO M R, SUI P F, FENG R F, SHANKAR K, BERGENS S H, CHENG G J, LUO J L. Nanosecond laser confined bismuth moiety with tunable structures on graphene for carbon dioxide reduction[J]. ACS Nano, 2023, 17(9): 8705-8716
doi: 10.1021/acsnano.3c01897
JOYA K S, JOYA Y F, OCAKOGLU K, VAN DE KROL R. Water-splitting catalysis and solar fuel devices: Artificial leaves on the move[J]. Angew Chem. ‒Int Edit, 2013, 52(40): 10426-10437
doi: 10.1002/anie.201300136
JIANG Q Q, XU L, CHEN N, ZHANG H, DAI L M, WANG S Y. Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction[J]. Angew Chem. ‒Int Edit, 2016, 55(44): 13849-13853
doi: 10.1002/anie.201607393
JIAO Y, ZHENG Y, JARONIEC M, QIAO S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev., 2015, 44(8): 2060-2086
doi: 10.1039/C4CS00470A
VOIRY D, YANG J, CHHOWALLA M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction[J]. Adv. Mater., 2016, 28(29): 6197-6206
doi: 10.1002/adma.201505597
NAYAK P, JIANG Q, KURRA N, WANG X, BUTTNER U, ALSHAREEF H N. Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2017, 5(38): 20422-20427
doi: 10.1039/C7TA06236B
YUAN H F, JIANG D, LI Z M, LIU X Y, TANG Z F, ZHANG X Z, ZHAO L L, HUANG M, LIU H, SONG K P, ZHOU W J. Laser synthesis of PtMo single-atom alloy electrode for ultralow voltage hydrogen generation[J]. Adv. Mater., 2024, 36(5): 2305375
doi: 10.1002/adma.202305375
YUAN H F, ZHAO L, CHANG B, CHEN Y K, DONG T J, HE J T, JIANG D, YU W Q, LIU H, ZHOU W J. Laser fabrication of Pt anchored Mo2C micropillars as integrated gas diffusion and catalytic electrode for proton exchange membrane water electrolyzer[J]. Appl. Catal. B‒Environ., 2022, 314: 121455
doi: 10.1016/j.apcatb.2022.121455
YUAN H I, LI J W, TANG Z F, WANG Y J, WU T, HUANG M, ZHAO L L, ZHAO Z H, LIU H, XU C X, LIU X Y, ZHOU W J. Enhanced interfacial stability of Pt/TiO2/Ti via Pt-O bonding for efficient acidic electrolyzer[J]. Chem. Eng. J., 2024, 492: 152339
doi: 10.1016/j.cej.2024.152339
WANG N, BO X J, ZHOU M. Laser conversion of biomass into porous carbon composite under ambient condition for pH-Universal electrochemical hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2021, 604: 885-893
doi: 10.1016/j.jcis.2021.07.057
ZHAO L L, CHANG B, DONG T J, YUAN H F, LI Y, TANG Z F, LIU Z, LIU H, ZHANG X L, ZHOU W J. Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions[J]. J. Mater. Chem. A, 2022, 10(37): 20071-20079
doi: 10.1039/D2TA01982E
LI Y J, LIAO C A, TANG K W, ZHANG N, QI W H, XIE H P, HE J, YIN K, GAO Y L, WANG C D. Cobalt hydroxide-black phosphorus nanosheets: A superior electrocatalyst for electrochemical oxygen evolution[J]. Electrochim. Acta, 2019, 297: 40-45
doi: 10.1016/j.electacta.2018.11.171
HU S, TIAN M, RIBEIRO E L, DUSCHER G, MUKHERJEE D. Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts[J]. J. Power Sources, 2016, 306: 413-423
doi: 10.1016/j.jpowsour.2015.11.078
HU S, GOENAGA G, MELTON C, ZAWODZINSKI T A, MUKHERJEE D. PtCo/CoOx nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions[J]. Appl. Catal. B‒Environ., 2016, 182: 286-96
doi: 10.1016/j.apcatb.2015.09.035
WU H F, YIN K, QI W H, ZHOU X F, HE J T, LI J M, LIU Y Y, HE J, GONG S, LI Y J. Rapid fabrication of Ni/NiO@CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting[J]. ChemSusChem, 2019, 12(12): 2773-2779
doi: 10.1002/cssc.201900479
YANG S, YIN K, WU J R, WU Z P, CHU D K, HE J, DUAN J A. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation[J]. Nanoscale, 2019, 11(38): 17607-17614
doi: 10.1039/C9NR04381K
YIN K, DU H F, DONG X R, WANG C, DUAN J A, HE J. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626
doi: 10.1039/C7NR05683D
CAI M Y, PAN R, LIU W J, LUO X, CHEN C H, ZHANG H J, ZHONG M L. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 2019, 12(15): 3562-3570
doi: 10.1002/cssc.201901020
WANG N, BO X J, ZHOU M. Single-step and room-temperature synthesis of laser-induced Pt/VC nanocomposites as effective bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions[J]. ACS Appl. Mater. Interfaces, 2022, 14(20): 23332-23341
doi: 10.1021/acsami.2c00747
YU M Q, WAAG F, CHAN C K, WEIDENTHALER C, BARCIKOWSKI S, TÜYSÜZ H. Laser fragmentation-induced defect-rich cobalt oxide nanoparticles for electrochemical oxygen evolution reaction[J]. ChemSusChem, 2020, 13(3): 520-528
doi: 10.1002/cssc.201903186
YU T, HOU Y H, SHI P, YANG Y, CHEN M Y, ZHOU W D, JIANG Z Z, LUO X F, ZHOU H, YUAN C L. Boosting the OER performance of nitrogen-doped Ni nanoclusters confined in an amorphous carbon matrix[J]. Inorg. Chem., 2022, 61(4): 2360-2367
doi: 10.1021/acs.inorgchem.1c03780
CHEN Y K, WANG Y J, YU J Y, XIONG G W, NIU H S, LI Y, SUN D H, ZHANG X L, LIU H, ZHOU W J. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting[J]. Adv. Sci., 2022, 9(10): 2105869
doi: 10.1002/advs.202105869
DE LUNA P, HAHN C, HIGGINS D, JAFFER S A, JARAMILLO T F, SARGENT E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506
doi: 10.1126/science.aav3506
DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51
doi: 10.1038/nature11115
SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998
doi: 10.1126/science.aad4998
SHINDE S S, JUNG J Y, WAGH N K, LEE C H, KIM D H, KIM S H, LEE S U, LEE J H. Ampere-hour-scale zinc-air pouch cells[J]. Nat. Energy, 2021, 6(6): 592-604
doi: 10.1038/s41560-021-00807-8
ZAMAN S, HUANG L, DOUKA A I, YANG H, YOU B, XIA B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew Chem. ‒Int Edit, 2021, 60(33): 17832-17852
doi: 10.1002/anie.202016977
BRANDIELE R, GUADAGNINI A, GIRARDI L, DRAŽIĆ G, DALCONI M C, RIZZI G A, AMENDOLA V, DURANTE C. Climbing the oxygen reduction reaction volcano plot with laser ablation synthesis of PtxY nanoalloys[J]. Catal. Sci. Technol., 2020, 10(14): 4503-4508
doi: 10.1039/D0CY00983K
SHA Y, MOISSINAC F, ZHU M H, HUANG K, GUO H Y, WANG L T, LIU Y X, LI L, THOMAS A, LIU Z. Laser synthesis of nonprecious metal-based single-atom catalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2023, 15(44): 51004-51012
doi: 10.1021/acsami.3c09556
CHINNADURAI D, LEE S J, YU Y, NAM S Y, CHOI M Y. Cation modulation in dual-phase nickel sulfide nanospheres by pulsed laser irradiation for overall water splitting and methanol oxidation reaction[J]. Fuel, 2022, 320: 123915
doi: 10.1016/j.fuel.2022.123915
NAIK S S, THEERTHAGIRI J, MIN A, MOON C J, LEE S J, CHOI M Y. Selective furfural conversion via parallel hydrogenation-oxidation on MOF-derived CuO/RuO2/C electrocatalysts via pulsed laser[J]. Appl. Catal. B‒Environ., 2023, 339: 123164
doi: 10.1016/j.apcatb.2023.123164
YIN Y H, SUN X C, ZHOU M, ZHAO X R, QIN J, QIAO S Z, DU X W, YANG J. Laser-induced pyridinic-nitrogen-rich defective carbon nanotubes for efficient oxygen electrocatalysis[J]. ChemCatChem, 2019, 11(24): 6131-6138
doi: 10.1002/cctc.201901875
ZHONG W X, ZHAO X R, QIN J Y, YANG J. An active hybrid electrocatalyst with synergized pyridinic nitrogen-cobalt and oxygen vacancies for bifunctional oxygen reduction and evolution[J]. Chin. J. Chem., 2021, 39(3): 655-660
doi: 10.1002/cjoc.202000445
VELISCEK Z, PERSE L S, DOMINKO R, KELDER E, GABERSCEK M. Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using laser assisted chemical vapour pyrolysis[J]. J. Power Sources, 2015, 273: 380-388
doi: 10.1016/j.jpowsour.2014.09.111
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367
doi: 10.1038/35104644
KANG K, MENG Y S, BRÉGER J, GREY C P, CEDER G. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980
doi: 10.1126/science.1122152
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430
doi: 10.1016/j.jpowsour.2009.11.048
THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy Environ. Sci., 2012, 5(7): 7854-7863
doi: 10.1039/c2ee21892e
LEE D, PATWA R, HERFURTH H, MAZUMDER J. Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries[J]. J. Power Sources, 2012, 210: 327-338
doi: 10.1016/j.jpowsour.2012.03.030
NITTA N, WU F, LEE J T, YUSHIN G. Li-ion battery materials: Present and future[J]. Mater. Today, 2015, 18(5): 252-264
doi: 10.1016/j.mattod.2014.10.040
SUK J, KIM D Y, KIM D W, KANG Y. Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2(8): 2478-2481
doi: 10.1039/c3ta14645f
KRIEGLER J, HILLE L, STOCK S, KRAFT L, HAGEMEISTER J, HABEDANK J B, JOSSEN A, ZAEH M F. Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes[J]. Appl. Energy, 2021, 303: 117693
doi: 10.1016/j.apenergy.2021.117693
BERHE M G, OH H G, PARK S K, LEE D. Laser cutting of silicon anode for lithium-ion batteries[J]. J. Mater. Res. Technol., 2022, 16: 322-334
doi: 10.1016/j.jmrt.2021.11.135
LI W, WU S S, ZHANG H R, ZHANG X J, ZHUANG J L, HU C F, LIU Y L, LEI B F, MA L, WANG X J. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots[J]. Adv. Funct. Mater., 2018, 28(44): 1804004
doi: 10.1002/adfm.201804004
WANG Y F, HUANG C X, HE Q, GUO F J, WANG M S, SONG L Y, ZHU Y T. Heterostructure induced dispersive shear bands in heterostructured Cu[J]. Scr. Mater., 2019, 170: 76-80
doi: 10.1016/j.scriptamat.2019.05.036
HE B Y, PENG H W, CHEN Y, ZHAO Q. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J. Membr. Sci., 2020, 608: 118202
doi: 10.1016/j.memsci.2020.118202
WANG L, YUAN Y F, ZHANG X T, CHEN Q, GUO S Y. Co3O4 hollow nanospheres/carbon-assembled mesoporous polyhedron with internal bubbles encapsulating TiO2 nanosphere for high-performance lithium ion batteries[J]. Nanotechnology, 2019, 30(35): 355401
doi: 10.1088/1361-6528/ab2002
ZHONG W W, HUANG X H, LIN Y, CAO Y Q, WANG Z P. Compact Co3O4/Co in-situ nanocomposites prepared by pulsed laser sintering as anode materials for lithium-ion batteries[J]. J. Energy Chem., 2021, 58: 386-390
doi: 10.1016/j.jechem.2020.10.013
CHEN T, MA L B, CHENG B R, CHEN R P, HU Y, ZHU G Y, WANG Y R, LIANG J, TIE Z X, LIU J, JIN Z. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries[J]. Nano Energy, 2017, 38: 239-248
doi: 10.1016/j.nanoen.2017.05.064
GOODENOUGH J B. Evolution of strategies for modern rechargeable batteries[J]. Accouts Chem. Res., 2013, 46(5): 1053-1061
doi: 10.1021/ar2002705
EFTEKHARI A, KIM D W. Cathode materials for lithium-sulfur batteries: A practical perspective[J]. J. Mater. Chem. A, 2017, 5(34): 17734-17776
doi: 10.1039/C7TA00799J
LI F, LIU Q H, HU J W, FENG Y Z, HE P B, MA J M. Recent advances in cathode materials for rechargeable lithium-sulfur batteries[J]. Nanoscale, 2019, 11(33): 15418-15439
doi: 10.1039/C9NR04415A
KAMISAN A I, KUDIN T I T, KAMISAN A S, OMAR A F C, TAIB M F M, HASSAN O H, ALI A M M, YAHYA M Z A. Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries[J]. Int. J. Hydrog. Energy, 2022, 47(13): 8630-8657
doi: 10.1016/j.ijhydene.2021.12.166
KOTHURU A, COHEN A, DAFFAN G, PATOLSKY F. Direct laser-printing of molecularly-dispersed strongly-anchored sulfur-graphene layers as high-performance cathodes for polysulfide shuttle effect-inhibited lithium-sulfur batteries[J]. ChemRxiv., 2024. https://doi.org/10.26434/chemrxiv-2024-qdtpf
doi: 10.26434/chemrxiv-2024-qdtpf
WANG Y, HUANG J Y, LU J G, LU B, YE Z Z. Fabricating efficient polysulfide barrier via ultrathin tantalum pentoxide grown on separator for lithium-sulfur batteries[J]. J. Electroanal. Chem., 2019, 854: 113539
doi: 10.1016/j.jelechem.2019.113539
LEE J, SONG H, MIN K A, GUO Q Y, KIM D, ZHENG Z J, HAN B, JUNG Y, LEE L Y S. Laser-ablated red phosphorus on carbon nanotube film for accelerating polysulfide conversion toward high-performance and flexible lithium-sulfur batteries[J]. Small Methods, 2021, 5(7): 2100215
doi: 10.1002/smtd.202100215
WANG W, TAD M O, SHAO Z P. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment[J]. Chem. Soc. Rev., 2015, 44(15): 5371-5408
doi: 10.1039/C5CS00113G
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176
doi: 10.1021/ja3091438
POIZOT P, LARUELLE S, GRUGEON S, DUPONT L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499
doi: 10.1038/35035045
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657
doi: 10.1038/451652a
LIU J, BAO Z N, CUI Y, DUFEK E J, GOODENOUGH J B, KHALIFAH P, LI Q Y, LIAW B Y, LIU P, MANTHIRAM A, MENG Y S, SUBRAMANIAN V R, TONEY M F, VISWANATHAN V V, WHITTINGHAM M S, XIAO J, XU W, YANG J H, YANG X Q, ZHANG J G. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186
doi: 10.1038/s41560-019-0338-x
MATSUDA S, YASUKAWA E, KAMEDA T, KIMURA S, YAMAGUCHI S, KUBO Y, UOSAKI K. Carbon-black-based self-standing porous electrode for 500 Wh/kg rechargeable lithium-oxygen batteries[J]. Cell Rep. Phys. Sci., 2021, 2(7): 100506
doi: 10.1016/j.xcrp.2021.100506
KWAK W J, PARK J, NGUYEN T T, KIM H, BYON H R, JANG M, SUN Y K. A dendrite- and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries[J]. J. Mater. Chem. A, 2019, 7(8): 3857-3862
doi: 10.1039/C8TA11941D
LI C L, HUANG G, YU Y, XIONG Q, YAN J M, ZHANG X B. Three birds with one stone: An integrated cathode-electrolyte structure for high-performance solid-state lithium-oxygen batteries[J]. Small, 2022, 18(17): 2107833
doi: 10.1002/smll.202107833
LIU T, XU J J, LIU Q C, CHANG Z W, YIN Y B, YANG X Y, ZHANG X B. Ultrathin, lightweight, and wearable Li-O2 battery with high robustness and gravimetric/volumetric energy density[J]. Small, 2017, 13(6): 1602952
doi: 10.1002/smll.201602952
REN M Q, ZHANG J B, ZHANG C H, STANFORD M G, CHYAN Y, YAO Y, TOUR J M. Quasi-solid-state Li-O2 batteries with laser-induced graphene cathode catalysts[J]. ACS Appl. Energy Mater., 2020, 3(2): 1702-1709
doi: 10.1021/acsaem.9b02182
REN M Q, ZHANG J B, FAN M M, AJAYAN P M, TOUR J M. Li-breathing air batteries catalyzed by MnNiFe/laser-induced graphene catalysts[J]. Adv. Mater. Interfaces, 2019, 6(19): 1901035
doi: 10.1002/admi.201901035
BEIDAGHI M, GOGOTSI Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors[J]. Energy Environ. Sci., 2014, 7(3): 867-884
doi: 10.1039/c3ee43526a
WANG Z L. Toward self-powered sensor networks[J]. Nano Today, 2010, 5(6): 512-514
doi: 10.1016/j.nantod.2010.09.001
BAE J, SONG M K, PARK Y J, KIM J M, LIU M, WANG Z L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew Chem. ‒Int Edit, 2011, 50(7): 1683-1687
doi: 10.1002/anie.201006062
YU D S, GOH K L, WANG H, WEI L, JIANG W C, ZHANG Q, DAI L M, CHEN Y. Author correction: Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nat. Nanotechnol., 2020, 15(9): 811
doi: 10.1038/s41565-020-0718-1
CHMIOLA J, LARGEOT C, TABERNA P L, SIMON P, GOGOTSI Y. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 2010, 328(5977): 480-483
doi: 10.1126/science.1184126
WU Z S, ZHENG Y J, ZHENG S H, WANG S, SUN C L, PARVEZ K, IKEDA T, BAO X H, M LLEN K, FENG X L. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance[J]. Adv. Mater., 2017, 29(3): 1602960
doi: 10.1002/adma.201602960
FIC K, PLATEK A, PIWEK J, FRACKOWIAK E. Sustainable materials for electrochemical capacitors[J]. Mater. Today, 2018, 21(4): 437-454
doi: 10.1016/j.mattod.2018.03.005
PECH D, BRUNET M, DUROU H, HUANG P, MOCHALIN V, GOGOTSI Y, TABERNA P L, SIMON P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat. Nanotechnol., 2010, 5(9): 651-654
doi: 10.1038/nnano.2010.162
LIN J, ZHANG C G, YAN Z, ZHU Y, PENG Z W, HAUGE R H, NATELSON D, TOUR J M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance[J]. Nano Lett., 2013, 13(1): 72-78
doi: 10.1021/nl3034976
HEON M, LOFLAND S, APPLEGATE J, NOLTE R, CORTES E, HETTINGER J D, TABERNA P L, SIMON P, HUANG P, BRUNET M, GOGOTSI Y. Continuous carbide-derived carbon films with high volumetric capacitance[J]. Energy Environ. Sci., 2011, 4(1): 135-138
doi: 10.1039/C0EE00404A
BEIDAGHI M, WANG C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Adv. Funct. Mater., 2012, 22(21): 4501-4510
doi: 10.1002/adfm.201201292
HSIA B, KIM M S, CARRARO C, MABOUDIAN R. Cycling characteristics of high energy density, electrochemically activated porous-carbon supercapacitor electrodes in aqueous electrolytes[J]. J. Mater. Chem. A, 2013, 1(35): 10518-10523
doi: 10.1039/c3ta11670k
EL-KADY M F, STRONG V, DUBIN S, KANER R B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330
doi: 10.1126/science.1216744
GAO W, SINGH N, SONG L, LIU Z, REDDY A L M, CI L J, VAJTAI R, ZHANG Q, WEI B Q, AJAYAN P M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat. Nanotechnol., 2011, 6(8): 496-500
doi: 10.1038/nnano.2011.110
MARCANO D C, KOSYNKIN D V, BERLIN J M, SINITSKII A, SUN Z Z, SLESAREV A S, ALEMANY L B, LU W, TOUR J M. Correction to improved synthesis of graphene oxide[J]. ACS Nano, 2018, 12(2): 2078
doi: 10.1021/acsnano.8b00128
DIMIEV A, KOSYNKIN D V, ALEMANY L B, CHAGUINE P, TOUR J M. Pristine graphite oxide[J]. J. Am. Chem. Soc., 2012, 134(5): 2815-2822
doi: 10.1021/ja211531y
EL-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nat. Commun., 2013, 4(1): 1475
doi: 10.1038/ncomms2446
GUO H, YAN J F, JIANG L, DENG S F, LIN X Z, QU L T. Femtosecond laser bessel beam fabrication of a supercapacitor with a nanoscale electrode gap for high specific volumetric capacitance[J]. ACS Appl. Mater. Interfaces, 2022, 14(34): 39220-39229
doi: 10.1021/acsami.2c10037
GUO H, QIAO M, YAN J F, JIANG L, YU J C, LI J Q, DENG S F, QU L T. Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance[J]. Adv. Funct. Mater., 2023, 33(23): 2213514
doi: 10.1002/adfm.202213514
KHAN Y, OSTFELD A E, LOCHNER C M, PIERRE A, ARIAS A C. Monitoring of vital signs with flexible and wearable medical devices[J]. Adv. Mater., 2016, 28(22): 4373-4395
doi: 10.1002/adma.201504366
WU W, HAICK H. Materials and wearable devices for autonomous monitoring of physiological markers[J]. Adv. Mater., 2018, 30(41): 1705024
doi: 10.1002/adma.201705024
HUANG C B, WITOMSKA S, ALIPRANDI A, STOECKEL M A, BONINI M, CIESIELSKI A, SAMOR P. Molecule-graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring[J]. Adv. Mater., 2019, 31(1): 1804600
doi: 10.1002/adma.201804600
JIANG Y, LIU Z Y, MATSUHISA N, QI D P, LEOW W R, YANG H, YU J C, CHEN G, LIU Y Q, WAN C J, LIU Z J, CHEN X D. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors[J]. Adv. Mater., 2018, 30(12): 1706589
doi: 10.1002/adma.201706589
KANG S, CHO S, SHANKER R, LEE H, PARK J, UM D S, LEE Y, KO H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones[J]. Science Advances, 2018, 4(8): eaas8772
doi: 10.1126/sciadv.aas8772
CHEN K, SHI L R, ZHANG Y F, LIU Z F. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications[J]. Chem. Soc. Rev., 2018, 47(9): 3018-3036
doi: 10.1039/C7CS00852J
CHABOT V, HIGGINS D, YU A P, XIAO X C, CHEN Z W, ZHANG J J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment[J]. Energy Environ. Sci., 2014, 7(5): 1564-1596
doi: 10.1039/c3ee43385d
LIN J, PENG Z W, LIU Y Y, RUIZ-ZEPEDA F, YE R Q, SAMUEL E L G, YACAMAN M J, YAKOBSON B I, TOUR J M. Laser-induced porous graphene films from commercial polymers[J]. Nat. Commun., 2014, 5(1): 5714
doi: 10.1038/ncomms6714
CHEN X P, LUO F, YUAN M, XIE D L, SHEN L, ZHENG K, WANG Z P, LI X D, TAO L Q. A dual-functional graphene-based self-alarm health-monitoring E-skin[J]. Adv. Funct. Mater., 2019, 29(51): 1904706
doi: 10.1002/adfm.201904706
FENZL C, NAYAK P, HIRSCH T, WOLFBEIS O S, ALSHAREEF H N, BAEUMNER A J. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sens., 2017, 2(5): 616-620
doi: 10.1021/acssensors.7b00066
LEI Y J, ALSHAREEF A H, ZHAO W L, INAL S. Laser-scribed graphene electrodes derived from lignin for biochemical sensing[J]. ACS Appl. Nano. Mater., 2020, 3(2): 1166-1174
doi: 10.1021/acsanm.9b01795
XIN D, HAN J, SONG W, HAN W B, WANG M, LI Z M, ZHANG Y W, LI Y, LIU H, LIU X Y, SUN D H, ZHOU W J. Laser-processed lithium niobate wafer for pyroelectric sensor[J]. InfoMat., 2024, 6(10): e12557
doi: 10.1002/inf2.12557
WANG J J, SUN M M, PEI X Y, ZHENG L, MA C B, LIU J, CAO M Z, BAI J, ZHOU M. Flexible biofuel cell-in-a-tube (iezTube): An entirely self-contained biofuel cell for wearable green bio-energy harvesting[J]. Adv. Funct. Mater., 2022, 32(48): 2209697
doi: 10.1002/adfm.202209697
SUN M M, PEI X Y, XIN T, LIU J, MA C B, CAO M Z, ZHOU M. A flexible microfluidic chip-based universal fully integrated nanoelectronic system with point-of-care raw sweat, tears, or saliva glucose monitoring for potential noninvasive glucose management[J]. Anal. Chem., 2022, 94(3): 1890-1900
doi: 10.1021/acs.analchem.1c05174
PEI X Y, SUN M M, WANG J J, BAI J, BO X J, ZHOU M. A bifunctional fully integrated wearable tracker for epidermal sweat and wound exudate multiple biomarkers monitoring[J]. Small, 2022, 18(46): 2205061
doi: 10.1002/smll.202205061
DENG W, SUN M M, CAO M Z, MA C B, BO X J, BAI J, ZHOU M. A fully integrated wearable biomimetic microfluidic wound tracker for in situ dynamic monitoring of wound exudate oxygen[J]. ACS Nano, 2025, 19(16): 16163-16174
doi: 10.1021/acsnano.5c04304
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046