Citation: Liyong DU, Yi LIU, Guoli YANG. Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404 shu

Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur

Figures(9)

  • In this study, ZnSnO3/NiO heterostructures were synthesized using a co-precipitation method followed by an annealing process. The gas-sensitive characteristics of the sensors based on these samples were evaluated. The results indicate that the sensor performance was optimized when the molar ratio of Ni to Zn was 1∶2. Specifically, the response values of the ZnSnO3/NiO-2-based sensor to 100 μL·L-1 triethylamine (TEA) gas at 220 ℃ reached 70.6, which were 6.1 times higher than that of the pure ZnSnO3 based sensor. The findings demonstrate that ZnSnO3/NiO heterostructures exhibited not only short response and recovery times (1 s/18 s) but also good gas selectivity, repeatability, and long-term stability. The enhanced sensing mechanism has been investigated in detail.
  • 加载中
    1. [1]

      LI W R, XU H Y, ZHAI T, YU H Q, CHEN Z R, QIU Z W, SONG X P, WANG J Q, CAO B Q. Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes[J]. Sens. Actuator B-Chem., 2017,253:97-107.

    2. [2]

      LI S R, GUAN M Y, LI X Z, GUO Y. Light irradiation enhanced triethylamine gas sensing materials based on ZnO/ZnFe2O4composites[J]. Sens. Actuator B-Chem., 2016,236:350-357. doi: 10.1016/j.snb.2016.05.130

    3. [3]

      CAI T M, CHEN L W, REN Q, CAI S, ZHANG J. The biodegradation pathway of triethylamine and its biodegradation by immobilized Arthrobacter protophormiae cells[J]. J. Hazard. Mater., 2011,186(1):59-66.

    4. [4]

      JU D X, XU H Y, QIU Z W, GUO J, ZHANG J, CAO B Q. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction[J]. Sens. Actuator B-Chem., 2014,200:288-296.

    5. [5]

      SUN H M, LIU L. Metal-organic frameworks-derived 2D spindle-like Sn doped Co3O4 porous nanosheets as efficient materials for TEA detection[J]. Sens. Actuator B-Chem., 2021,338129825. doi: 10.1016/j.snb.2021.129825

    6. [6]

      WANG C S, BAI Y Y, LIU X X, LI J H, CHU X F, LIANG S M. Preparation and gas-sensing properties of WS2/CuGa2O4 composite materials[J]. Chinese J. Inorg. Chem., 2023,39(8):1519-1526.

    7. [7]

      BU X, BAO S J, CHU X F, LIANG S M, WANG C S, BAI Y Y. Preparation and gas-sensing properties of MoS2/Cd2SnO4 composite materials[J]. Chinese J. Inorg. Chem., 2022,38(11):2173-2180.

    8. [8]

      CHEN S X, JIA L H, GUO X F, ZHAO Z L, YANG R, WANG X. MOFs self-sacrifice template preparation and NO2 gas sensing performance of ZnO[J]. Chinese J. Inorg. Chem., 2020,36(9):1639-1648.

    9. [9]

      LEE K Y, HSIEH J C, CHEN C A, CHEN W L, MENG H F, LU C J, HORNG S F, ZAN H W. Ultrasensitive detection of hydrogen sulfide gas based on perovskite vertical channel chemosensor[J]. Sens. Actuator B-Chem., 2021,326128988. doi: 10.1016/j.snb.2020.128988

    10. [10]

      SHELLAIAH M, SUN K W. Review on sensing applications of perovskite nanomaterials[J]. Chemosensors, 2020,8(3)55. doi: 10.3390/chemosensors8030055

    11. [11]

      CASANOVA-CHAFER J, GARCIA-ABOAL R, ATIENZAR P, LLOBET E. The role of anions and cations in the gas sensing mechanisms of graphene decorated with lead halide perovskite nanocrystals[J]. Chem. Commun., 2020,56(63):8956-8959.

    12. [12]

      DU L Y, WANG D X, GU K K, ZHANG M Z. Construction of PdOdecorated double-shell ZnSnO3 hollow microspheres for n-propanol detection at low temperature[J]. Inorg. Chem. Front., 2021,8(3):787-795.

    13. [13]

      FENG G Q, CHE Y H, SONG C W, XIAO J K, FAN X F, SUN S, HUANG G H, MA Y C. Morphology-controlled synthesis of ZnSnO3 hollow spheres and their n butanol gas sensing performance[J]. Ceram. Int., 2021,47(2):2471-2482.

    14. [14]

      WANG X Y, DING B N, LIU Y P, ZHU X T, LI H, XIA M Z, FU H, LI M X. Synthesis of 3D flower like ZnSnO3 and improvement of ethanol-sensing properties at room temperature based on nano-TiO2 decoration and UV radiation[J]. Sens. Actuator B-Chem., 2018,264:119-127.

    15. [15]

      ZENG Y, ZHANG K, WANG X L, SUI Y M, ZOU B, ZHENG W T, ZOU G T. Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages[J]. Sens. Actuator B-Chem., 2011,159(1):245-250. doi: 10.1016/j.snb.2011.06.080

    16. [16]

      WANG J Y, WAN J W, WANG D. Hollow multishelled structures for promising applications: Understanding the structure-performance correlation[J]. Acc. Chem. Res., 2019,52(8):2169-2178. doi: 10.1021/acs.accounts.9b00112

    17. [17]

      SUI Y M, ZENG Y, ZHENG W T, LIU B B, ZOU B, YANG H B. Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties[J]. Sens. Actuator B-Chem., 2012,171:135-140.

    18. [18]

      SUN H M, TANG X N, YAO Y, LIU L. Metal-organic frameworksderived Al/Mo codoped porous Co3O4 hollow tetrahedrons for efficient triethylamine detection[J]. J. Alloy. Compd., 2023,968171725. doi: 10.1016/j.jallcom.2023.171725

    19. [19]

      YANG X L, YU Q, ZHANG S F, SUN P, LU H Y, YAN X, LIU F M, ZHOU X, LIANG X S, GAO Y, LU G Y. Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites[J]. Sens. Actuator B-Chem., 2018,266:213-220. doi: 10.1016/j.snb.2018.03.044

    20. [20]

      YU S W, JIA X H, YANG J, WANG S Z, LI Y, SONG H J. Highly sensitive ethanol gas sensor based on CuO/ZnSnO3 heterojunction composites[J]. Mater. Lett., 2021,291129531. doi: 10.1016/j.matlet.2021.129531

    21. [21]

      JIN C, KIM H, AN S, LEE C. Highly sensitive H2S gas sensors based on CuO-coated ZnSnO 3 nanorods synthesized by thermal evaporation[J]. Ceram. Int., 2012,38(7):5973-5978. doi: 10.1016/j.ceramint.2012.04.050

    22. [22]

      XU K, ZHAO W, YU X, DUAN S L, ZENG W. Enhanced ethanol sensing performance using Co3O4-ZnSnO3 arrays prepared on alumina substrates[J]. Physica E, 2020,117113825. doi: 10.1016/j.physe.2019.113825

    23. [23]

      YANG M, LU J Y, WANG X, ZHANG H, CHEN F, SUN J B, YANG J Q, SUN Y F, LU G Y. Acetone sensors with high stability to humidity changes based on Ru doped NiO flower like microspheres[J]. Sens. Actuator B-Chem., 2020,313127965. doi: 10.1016/j.snb.2020.127965

    24. [24]

      ULLAH M, LV H, LIU Z, BAI X, CHEN J K, ZHANG Y, WANG J, SUN B H, LI L, SHI K Y. Rational fabrication of a g-C3N4/NiO hierarchical nanocomposite with a large surface area for the effective detection of NO2 gas at room temperature[J]. Appl. Surf. Sci., 2021,550149368. doi: 10.1016/j.apsusc.2021.149368

    25. [25]

      ZHOU T T, ZHANG T, ZHANG R, LOU Z, DENG J N, WANG L L. Hollow ZnSnO3 cubes with controllable shells enabling highly efficient chemical sensing detection of formaldehyde vapors[J]. ACS. Appl. Mater., 2017,9:14525-14533. doi: 10.1021/acsami.7b03112

    26. [26]

      HUANG J R, XU X J, GU C P, WANG W Z, GENG B Y, SUN Y F, LIU J H. Size-controlled synthesis of porous ZnSnO3 cubes and their gas sensing and photocatalysis properties[J]. Sens. Actuator B - Chem., 2012,171-172:572-579. doi: 10.1016/j.snb.2012.05.036

    27. [27]

      DU L Y, GU K K, ZHU M M, ZHANG J, ZHANG M Z. Perovskitetype ZnSn (OH)6 hollow cubes with controllable shells for enhanced formaldehyde sensing performance at low temperature[J]. Sens. Actuator B-Chem., 2019,288:298-306.

    28. [28]

      YANG T Y, GU K K, ZHU M M, LU Q, ZHAI C B, ZHAO Q, YANG X D, ZHANG M Z. ZnO SnO2 heterojunction nanobelts: Synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties[J]. Sens. Actuator B-Chem., 2019,279:410-417.

    29. [29]

      WANG H, YUAN X Z, WU Y, ZENG G M, TU W G, SHENG C, DENG Y C, CHEN F, CHEW J W. Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn (OH)6 microparticle with facet oriented polyhedron for improved visible light driven photocatalysis[J]. Appl. Catal. B - Environ., 2017,209:543-553.

    30. [30]

      WANG Y D, CHEN T. Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode[J]. Electrochim. Acta, 2009,54(13):3510-3515.

    31. [31]

      MENG D, LIU D Y, WANG G S, SHEN Y B, SAN X G, LI M, MENG F L. Low temperature formaldehyde gas sensors based on NiOSnO2 heterojunction microflowers assembled by thin porous nanosheets[J]. Sens. Actuator B-Chem., 2018,273:418-428.

    32. [32]

      BAI S L, TIAN Y, ZHAO Y H, FU H, TANG P G, LUO R X, LI D Q, CHEN A F, LIU C C. Construction of NiO@ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing[J]. Sens. Actuator B-Chem., 2018,259:908-916.

    33. [33]

      MA Y T, XIE Q S, LIU X, ZHAO Y C, ZENG D Q, WANG L S, ZHENG Y, PENG D L. Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries[J]. Electrochim. Acta, 2015,182:327-333.

    34. [34]

      WANG L L, TANG K B, LIU Z P, WANG D K, SHENG J, CHENG W. Single crystalline ZnSn (OH)6 hollow cubes via self templated synthesis at room temperature and their photocatalytic properties[J]. J. Mater. Chem., 2011,21(12):4352-4357.

    35. [35]

      BAI S L, CHEN C, LUO R X, CHEN A F, LI D Q. Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J]. Sens. Actuator B - Chem., 2015,216:113-120.

    36. [36]

      BAI S L, TIAN K, TIAN Y, GUO J, FENG Y J, LUO R X, LI D Q, CHEN A F, LIU C C. Synthesis of Co3O4/TiO2 composite by pyrolyzing ZIF-67 for detection of xylene[J]. Appl. Surf. Sci., 2018,435:384-392.

    37. [37]

      YAN Y, LIU J Y, ZHANG H S, SONG D L, LI J Q, YANG P P, ZHANG M L, WANG J. One-pot synthesis of cubic ZnSnO3/ZnO heterostructure composite and enhanced gas-sensing performance[J]. J. Alloy. Compd., 2019,780:193-201.

    38. [38]

      ZHAO Q Q, JU D X, SONG X F, DENG X L, DING M, XU X J, ZENG H B. Polyhedral Zn2SnO4: Synthesis, enhanced gas sensing and photocatalytic performance[J]. Sens. Actuator B - Chem., 2016,229:627-634.

    39. [39]

      KOU X Y, WANG C, DING M D, FENG C H, LI X, MA J, ZHANG H, SUN Y F, LU G Y. Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties[J]. Sens. Actuator B -Chem., 2016,236:425-432.

    40. [40]

      LI W R, XU H Y, YU H Q, ZHAI T, XU Q, YANG X P, WANG J Q, CAO B Q. Different morphologies of ZnO and their triethylamine sensing properties[J]. J. Alloy. Compd., 2017,706:461-469.

    41. [41]

      ZOU Y H, CHEN S, SUN J, LIU J Q, CHE Y K, LIU X H, ZHANG J, YANG D J. Highly efficient gas sensor using a hollow SnO2 microfiber for triethylamine detection[J]. ACS Sens., 2017,2(7):897-902.

    42. [42]

      SA B S, ZITO C A, PERFECTO T M, VOLANTI D P. Porous ZnSnO3 nanocubes as a triethylamine sensor[J]. Sens. Actuator B - Chem., 2021,338129869.

    43. [43]

      LI Z D, XIONG Y, BI D Q, LIU Q, YANG C Y, ZHANG J. Continuously improved gas-sensing performance of Zn2SnO4 porous octahedrons by structure evolution and further ZnSnO3 nanosheets decoration[J]. J. Alloy. Compd., 2022,901163744.

    44. [44]

      WU M Z, ZHANG X F, GAO S, CHENG X L, RONG Z M, XU Y M, ZHAO H, HUO L H. Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property[J]. CrystEngComm, 2013,15(46):10123-10131.

    45. [45]

      HOA N D, EL-SAFTY S A. Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocomposite monoliths[J]. Anal. Methods, 2011,3(9):1948-1956.

    46. [46]

      YAMAZOE N, SAKAI G, SHIMANOE K. Oxide semiconductor gas sensors[J]. Catal. Surv. Asia, 2003,7:63-75.

    47. [47]

      LIU C, WANG B Q, LIU T, SUN P, GAO Y, LIU F M, LU G Y. Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures[J]. Sens. Actuator B - Chem., 2016,235:294-301.

    48. [48]

      GENG W C, MA Z Y, ZHAO Y J, YANG J H, HE X W, DUAN L B, LI F, HOU H, ZHANG Q Y. Morphology dependent gas sensing properties of CuO microstructures selfassembled from nanorods[J]. Sens. Actuator B-Chem., 2020,325128775.

    49. [49]

      WU J J, HUANG Q W, ZENG D W, ZHANG S P, YANG L, XIA D S, XIONG Z D, XIE C S. Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO2 NTs by electrospinning[J]. Sens. Actuator B-Chem., 2014,198:62-69.

    50. [50]

      QIN Y X, YE Z H. DFT study on interaction of NO2 with the vacancydefected WO 3 nanowires for gas-sensing[J]. Sens. Actuator B-Chem., 2016,222:499-507.

    51. [51]

      JAIN K, PANT R P, LAKSHMIKUMAR S T. Effect of Ni doping on thick film SnO2 gsensor[J]. Sens. Actuator B-Chem., 2006,113:823-829.

  • 加载中
    1. [1]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    2. [2]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    3. [3]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    4. [4]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    5. [5]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    6. [6]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    9. [9]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    10. [10]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    13. [13]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    14. [14]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    17. [17]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    18. [18]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

Metrics
  • PDF Downloads(0)
  • Abstract views(39)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return