Citation: Ximeng CHI, Jianwei WEI, Yunyun WANG, Wenxin DENG, Jiayi DAI, Xu ZHOU. First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401 shu

First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6

  • Corresponding author: Jianwei WEI, redskywei@cqut.edu.cn
  • Received Date: 8 November 2024
    Revised Date: 30 April 2025

Figures(10)

  • The electronic structure and optical properties of Au and I monodoped and co-doped double perovskite Cs2NaBiCl6 were studied using the first-principles method based on density functional theory. The results showed that when Au was mono-doped with Cs2NaBiCl6 by replacing Na at a ratio of 0.25, the band gap of the doped struc-ture decreased significantly, reaching a minimum of 1.86 eV. The band gap of the single-doped structure decreased with increased doping concentration. Compared to the pre-doping state, the absorption spectra of various concentra- tions of Au and I monodoped structures exhibited a redshift. The co-doping of Au and I resulted in a reduced band gap. Among them, when Au and I were uniformly adjacent to each other in the Cs2NaBiCl6 crystal, the band gap of the co-doped structure was the smallest, the light absorption capacity in the visible light region of 400-700 nm was the strongest, and the utilization rate of visible light was the highest.
  • 加载中
    1. [1]

      FAN Q Q, BIESOLD-MCGEE G V, MA J Z, XU Q N, PAN S, PENG J, LIN Z Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties[J]. . Angew. Chem.?Int. Edit, 2020,59(3):1030-1046. doi: 10.1002/anie.201904862

    2. [2]

      YUAN, QUAN, COMIN, WALTERS, SABATINI, VOZNYY, HOOGLAND, ZHAO, M. BEAUREGARD E, KANJANABOOS P, LU Z H, KIM D, H. SARGENT E. Perovskite energy funnels for efficient light-emitting diodes[J]. . Nat. Nanotechnol., 2016,11(10):872-877. doi: 10.1038/nnano.2016.110

    3. [3]

      WANG Y Y, ZHANG Y Z, WEI J W, ZENG H, ZHAO M, YANG C, FENG W L, MA Z W. First principles calculation on photoelectric properties of Cs2TiBr6 by substitution doping with Cl and Pd[J]. . Chinese J. Inorg. Chem., 2022,38(5):884-890.

    4. [4]

      CORREA-BAENA J P, SALIBA M, BUONASSISI T, GRÄTZEL M, ABATE A, TRESS W, HAGFELDT A. Promises and challenges of perovskite solar cells[J]. Science, 2017,358(6364):739-744. doi: 10.1126/science.aam6323

    5. [5]

      STRANKS, EPERON, GRANCINI, MENELAOU, ALCOCER, LEIJTENS, M. HERZ L, PETROZZA A, J.SNAITH H. Electron-hole diffusion lengths exceeding 1 micron in an organometal trihalide perovskite absorber[J]. . Science, 2013,342(6156):341-344. doi: 10.1126/science.1243982

    6. [6]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. . J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    7. [7]

      ZHOU J J, TAN L G, LIU Y, LI H, LIU X P, LI M H, WANG S Y, ZHANG Y, JIANG C F, HUA R M, TRESS W, MELONI S, YI C Y. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material[J]. . Joule, 2024,8(6):1691-1706. doi: 10.1016/j.joule.2024.02.019

    8. [8]

      BABAYIGIT A, ETHIRAJAN A, MULLER M, CONINGS B. Toxicity of organometal halide perovskite solar cells[J]. . Nat. Mater., 2016,15(3):247-251. doi: 10.1038/nmat4572

    9. [9]

      JELLICOE T C, RICHTER J M, GLASS H F J, TABACHNYK M, BRADY R, DUTTON S E, RAO A, FRIEND R H, CREDGINGTON D, GREENHAM N C, BOHM M L. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals[J]. . J. Am. Chem. Soc., 2016,138(9):2941-2944. doi: 10.1021/jacs.5b13470

    10. [10]

      WANG A F, YAN X X, ZHANG M, SUN S B, YANG M, SHEN W, PAN X Q, WANG P, DENG Z T. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via facile hotinjection process[J]. . Chem. Mater., 2016,28(22):8132-8140. doi: 10.1021/acs.chemmater.6b01329

    11. [11]

      PENG C, WEI J W, WU J H, MA Z W, QIAO C K, ZENG H. Modulation mechanism of electronic and optical properties of Cs2SnX6 (X=Cl, Br and I) under hydrostatic or uniaxial pressure[J]. . Funct. Mater.Lett., 2024,17(3)2451012. doi: 10.1142/S1793604724510123

    12. [12]

      LI B H, LONG R Y, XIA Y, MI Q X. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor[J]. . Angew. Chem.?Int. Edit, 2018,57(40):13154-13158. doi: 10.1002/anie.201807674

    13. [13]

      KHAN I, HAQ I U, ALI A, ALI Z, AHMAD I. Elastic and optoelectronic properties of Cs2NaMCl6 (M=In, Tl, Sb, Bi)[J]. . J. Electron. Mater., 2021,50(2):456-466. doi: 10.1007/s11664-020-08603-y

    14. [14]

      LOCARDI F, CIRIGNANO M, BARANOV D, DANG Z Y, PRATO M, DRAGO F, FERRETTI M, PINCHETTI V, FANCIULLI M, BROVELLI S, TRIZIO L D, MANNA L. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn - doped Cs2AgInCl6 nanocrystals[J]. . J. Am. Chem. Soc., 2018,140(40):12989-12995. doi: 10.1021/jacs.8b07983

    15. [15]

      PENG C, WEI J W, CHEN Y T, HU N, ZENG H. First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I)[J]. . Chinese J. Inorg. Chem., 2024,40(3):555-560.

    16. [16]

      JIANG J T, NIU G M, SUI L Z, WANG X W, ZHANG Y T, CHE L, WU G R, YUAN K Y, YANG X M. Transformation between the dark and bright self - trapped excitons in lead - free double - perovskite Cs2NaBiCl6 under pressure[J]. . J. Phys. Chem. Lett., 2021,12(30):7285-7292. doi: 10.1021/acs.jpclett.1c02072

    17. [17]

      WU C C, ZHANG Q H, LIU Y, LUO W, GUO X, HUANG Z R, TING H, SUN W H, ZHONG X R, WEI S Y, WANG S F, CHEN Z J, XIAO L X. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film[J]. . Adv. Sci., 2018,5(3)1700759. doi: 10.1002/advs.201700759

    18. [18]

      SUN Y M, FERNáNDEZ-CARRIóN A J, LIU Y H, YIN C L, MING X, LIU B M, WANG J, FU H, KUANG X J, XING X R. Bismuth-based halide double perovskite Cs2LiBiCl6: Crystal structure, luminescence, and stability[J]. . Chem. Mater., 2021,33(15):5905-5916. doi: 10.1021/acs.chemmater.1c00854

    19. [19]

      ZHOU J, RONG X M, ZHANG P, MOLOKEEV M S, WEI P J, LIU Q L, ZHANG X W, XIA Z G. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6[J]. . Adv. Opt. Mater., 2019,7(8)1801435. doi: 10.1002/adom.201801435

    20. [20]

      SHI H L, DU M H. Discrete electronic bands in semiconductors and insulators: Potential high-light-yield scintillators[J]. . Phys. Rev. Appl., 2015,3(5)054005. doi: 10.1103/PhysRevApplied.3.054005

    21. [21]

      WANG C, LIU Y, GUO Y R, MA L L, LIU Y L, ZHOU C Y, YU X, ZHAO G J. Lead - free sodium bismuth halide Cs2NaBiX6 double perovskite nanocrystals with highly efficient photoluminesence[J]. . Chem. Eng. J., 2020,397125367. doi: 10.1016/j.cej.2020.125367

    22. [22]

      YAO M M, WANG L, YAO J S, WANG K H, CHEN C, ZHU B S, YANG J N, WANG J J, XU W P, ZHANG Q, YAO H B. Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping[J]. . Adv. Opt. Mater., 2020,8(8)1901919. doi: 10.1002/adom.201901919

    23. [23]

      WU S F, LI W B, HU J J, GAO P. Antimony doped lead-free double perovskites (Cs2NaBi1-xSbxCl6) with enhanced light absorption and tunable emission[J][J]. . J. Mater. Chem. C, 2020,8(39):13603-13611. doi: 10.1039/D0TC03003A

    24. [24]

      LEE W, CHOI D, KIM S. Colloidal synthesis of shape - controlled Cs2NaBiX6 (X=Cl, Br) double perovskite nanocrystals: Discrete optical transition by non-bonding characters and energy transfer to Mn dopants[J]. . Chem. Mater., 2020,32(16):6864-6874. doi: 10.1021/acs.chemmater.0c01315

    25. [25]

      SHAH S Z A, NIAZ S, NASIR T, SIFUNA J. Eco-friendly bismuth based double perovskites X2NaBiCl6(X=Cs, Rb, K) for optoelectronic and thermoelectric applications: A first-principles study[J]. . Results Chem., 2023,5100828. doi: 10.1016/j.rechem.2023.100828

    26. [26]

      OUHAMMOU A, FAZOUAN N, ES-SMAIRI A, KHUILI M, ATMANI E H. DFT analysis of Cs2NaBiCl6, Cs2NaBiBr6, and Cs2NaBiI6 perovskites for optoelectronic and thermoelectric applications[J]. . Comput. Theor. Chem., 2024,1238114673. doi: 10.1016/j.comptc.2024.114673

    27. [27]

      MORSS L R, SIEGAL M, STENGER L, EDELSTEIN N. Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6[J]. . Inorg. chem., 1970,9(7):1771-1775. doi: 10.1021/ic50089a034

    28. [28]

      LIAO P Z, ZHAO X J, LI G L, SHEN Y, WANG M K. A new method for fitting current-voltage curves of planar heterojunction perovskite solar cells[J]. . Nano?Micro Lett., 2018,1(1):1-8.

  • 加载中
    1. [1]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    12. [12]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    13. [13]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    14. [14]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return