Citation: Shuwen SUN, Gaofeng WANG. Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399 shu

Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol

  • Corresponding author: Gaofeng WANG, wgf1979@126.com
  • Received Date: 7 November 2024
    Revised Date: 24 February 2025

Figures(9)

  • A Zn(Ⅱ)-based coordination polymer (CP), {[Zn2(bdc)2(mfdp)]2·4DMA·2Me2NH·3H2O}n (1), was synthesized by solvothermal method based on H2bdc and mfdp, where H2bdc=1, 4-benzenedicarboxylic acid, mfdp=2, 7-bis (4-pyridyl)-9, 9-dimethylfluorene, and DMA=N, N-dimethylacetamide. It was characterized by FTIR, elemental analysis, TGA, and single-crystal X-ray diffraction. In 1, two adjacent zinc ions lie in the same {ZnNO4} geometrical configurations, forming a paddle-wheel building block. Complex 1 displays 2-fold interpenetrating frameworks with {412· 63} topology and with the emission peak situated at 385 nm, which offers a good foundation to be integrated as a chemical sensor. The fluorescence sensing experiments showed that the LOD (limit of detection) of 2, 4, 6-trinitrophenol (TNP) was 0.164 μmol·L-1, and the quenching constant (KSV) was 6.65×104 L·mol-1, indicating the excellent detection ability of trace analytes in DMA.
  • 加载中
    1. [1]

      NAGARKAR S S, DESAI A V, SAMANTA P, GHOSH S K. Aqueous phase selective detection of 2, 4, 6-trinitrophenol using a fluorescent metal organic framework with a pendant recognition site[J]. Dalton Trans., 2015,44:15175-15180.

    2. [2]

      HE G, PENG H N, LIU T H, YANG M N, ZHANG Y, FANG Y. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation induced emission effect of siloles[J]. J. Mater. Chem., 2009,19:7347-7353.

    3. [3]

      PRAMANIK S, ZHENG C, ZHANG X, EMGE T J, LI J. New microporous metal organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds[J]. J. Am. Chem. Soc., 2001,133:4153-4155.

    4. [4]

      NAGARKAR S S, DESAI A V, GHOSH S K. Engineering metalorganic frameworks for aqueous phase 2, 4, 6 trinitrophenol (TNP) sensing[J]. CrystEngComm, 2016,18:2994-3007.

    5. [5]

      GOLE B, BAR A K, MUKHERJEE P S. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives[J]. Chem.-Eur. J., 2014,20:13321-13326.

    6. [6]

      HARPER R J, ALMIRALL J R, FURTON K G. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection[J]. Talanta, 2005,67:313-327. doi: 10.1016/j.talanta.2005.05.019

    7. [7]

      LI A, LI L, LIN Z, SONG L, WANG Z H, CHEN Q, YANG T, ZHOU X H, XIAO H P, YIN X J. Guest-induced reversible structural transitions and concomitant on/off luminescence switching of an Eu(Ⅲ) metalorganic framework and its application in detecting picric acid[J]. New J. Chem., 2015,39:2289-2295. doi: 10.1039/C4NJ01946F

    8. [8]

      LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009,3814771504.

    9. [9]

      HASEGAWA S, HORIKE S, MATSUDA R, FURUKAWA S, MOCHIZUKI K, KINOSHITA Y, KITAGAWA S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: Selective sorption and catalysis[J]. J. Am. Chem. Soc., 2007,129:2607-2614. doi: 10.1021/ja067374y

    10. [10]

      HU Z, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    11. [11]

      LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932. doi: 10.1021/cr200190s

    12. [12]

      GUILLERMV , KIM D, EUBANK J F, LUEBKE R, LIU X, ADIL K, LAH M S, EDDAOUDI M. A supermolecular building approach for the design and construction of metalorganic frameworks[J]. Chem. Soc. Rev., 2014,43:6141-6172.

    13. [13]

      JIA C, HE T, WANG G M. Zirconium-based metalorganic frameworks for fluorescent sensing[J]. Coord. Chem. Rev., 2023,476214930.

    14. [14]

      STOCK N, BISWAS S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chem. Rev., 2012,112:933-969.

    15. [15]

      DOLGOPOLOVA E A, RICE A M, MARTIN C R, SHUSTOVA N B. Photochemistry and photophysics of MOFs: Steps towards MOF based sensing enhancements[J]. Chem. Soc. Rev., 2018,47:4710-4728.

    16. [16]

      LIN J W, LIN A Z, LAI L M, CHEN J, CHEN J H, HAN Z Z. Synthesis of a Zn-MOF fluorescent material for sensitive detection of biothiols via an inner filter effect with MnO2 nanosheets[J]. Anal. Methods, 2024,16:8372-8379.

    17. [17]

      WANG G F. Structural diversity of two coordination polymers based on bis (4-(1H-imidazol-1yl) phenyl) methanone and polycarboxylate coligands: Syntheses, structures, and fluorescent properties[J]. Russ. J. Coord. Chem., 2018,44:540-546.

    18. [18]

      WANG G F, SUN S W, SONG S F, LÜ M. Synthesis of a Cd-based coordination polymer for luminescence detecting 2, 4, 6-trinitrophenol[J]. Chinese J. Inorg. Chem., 2023,39(12):2407-2414.

    19. [19]

      GUAN J P, XU F, TIAN C, PU L, YUAN M S, WANG J Y. Tricolor luminescence switching by thermal and mechanical stimuli in the crystal polymorphs of pyridyl substituted fluorene[J]. Chem. - Asian J., 2019,14:216-222.

    20. [20]

      Sheldrick G. M. SADABS, Program for empirical adsorption correction of area detector data[CP]. University of Göttingen, Germany, 2003.

    21. [21]

      Sheldrick G M. SHELXL 2014/7, Program for crystal structure refinement[CP]. University of Göttingen, Germany, 2014.

    22. [22]

      Sheldrick G. M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    23. [23]

      Blatov V A. Multipurpose crystallochemical analysis with the program package TOPOS[CP]. (2006-07-04)[2024-11-07]. http://iucrcomputing. ccp14. ac. uk/iucr-top/comm/ccom/newsletters/2006nov/

    24. [24]

      ZHANG J F, WU J J, TANG G D, FENG J Y, LUO F M, XU B, ZHANG C. Multiresponsive waterstable luminescent Cd coordination polymer for detection of TNP and Cu2+[J]. Sens. Actuator B - Chem., 2018,272:166-174.

    25. [25]

      XU H, PAN Z R, QI Z P, SUN J. Three luminescent Zn-MOFs based on V-shaped ligands for fluorescence sensing of 2, 4, 6-trinitrophenol and Fe3+in aqueous solution[J]. Chinese J. Inorg. Chem., 2022,38(12):2479-2490.

    26. [26]

      ZHANG J F, WU J J, GONG L P, FENG J Y, ZHANG C. Waterstable luminescent Zn(Ⅱ) metal-organic framework as rare multifunctional sensor for Cr (Ⅵ) and TNP[J]. ChemistrySelect, 2017,2:7465-7473.

    27. [27]

      WANG J, WU X R, LIU J Q, LI B H, SINGH A, KUMAR A, BATTEN S R. An uncommon (5, 5) connected 3D metal organic material for selective and sensitive sensing of nitroaromatics and ferric ion: Experimental studies and theoretical analysis[J]. CrystEngComm, 2017,19:3519-3525.

    28. [28]

      HE H M, CHEN S H, ZHANG D Y, YAN E C, ZHAO X J. A luminescent metalorganic framework as an ideal chemosensor for nitroaromatic compounds[J]. RSC Adv., 2017,7:38871-38876.

    29. [29]

      HE H M, SONG Y, SUN F X, BIAN Z, GAO L X, ZHU G S. A porous metalorganic framework formed by a V-shaped ligand and Zn(Ⅱ) ion with highly selective sensing for nitroaromatic explosives[J]. J. Mater. Chem. A, 2015,3:16598-16603.

    30. [30]

      DENG Y J, CHEN N J, LI Q Y, WU X J, HUANG X L, LIN Z H, ZHAO Y G. Highly fluorescent metal-organic frameworks based on a benzene-cored tetraphenylethene derivative with the ability to detect 2, 4, 6-trinitrophenol in water[J]. Cryst. Growth Des., 2017,17:3170-3177.

    31. [31]

      PARMAR B, RACHURI Y, BISHT K K, SURESH E. Syntheses and structural analyses of new 3D isostructural Zn(Ⅱ) and Cd(Ⅱ) luminescent MOFs and their application towards detection of nitroaromatics in aqueous media[J]. ChemistrySelect, 2016,1:6308-6315.

    32. [32]

      YANG Y, SHEN K, LIN J Z, ZHOU Y, LIU Q Y, HANG C, ABDELHAMID H N, ZHANG Z Q, CHEN H. A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor[J]. RSC Adv., 2016,6:45475-45481.

    33. [33]

      RACHURI Y, PARMAR B, BISHTA K K, SURESH E. Mixed ligand two dimensional Cd(Ⅱ)/Ni(Ⅱ) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(Ⅱ) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media[J]. Dalton Trans., 2016,45:7881-7892.

    34. [34]

      SONG X Z, SONG S Y, ZHAO S N, HAO Z M, ZHU M, MENG X, WU L L, ZHANG H J. Single-crystal-to-single-crystal transformation of a europium(Ⅲ) metal-organic framework producing a multi-responsive luminescent sensor[J]. Adv. Funct. Mater., 2014,24:4034-4041.

  • 加载中
    1. [1]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    2. [2]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    13. [13]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    14. [14]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    15. [15]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    16. [16]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    20. [20]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

Metrics
  • PDF Downloads(0)
  • Abstract views(34)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return