Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates
- Corresponding author: Jianhua JIA, jiajh3@mail.sysu.edu.cn Mingliang TONG, tongml@mail.sysu.edu.cn
Citation:
Yi DING, Peiyu LIAO, Jianhua JIA, Mingliang TONG. Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 141-148.
doi:
10.11862/CJIC.20240393
WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev. , 2019, 120(2): 1438-1511
LIU J, GOETJEN T A, WANG Q N, KNAPP J G, WASSON M C, YANG Y, SYED Z H, DELFERRO M, NOTESTEIN J M, FARHA O K, HUPP J T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization[J]. Chem. Soc. Rev. , 2022, 51(3): 1045-1097
doi: 10.1039/D1CS00968K
REN J W, LANGMI H W, NORTH B C, MATHE M. Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage[J]. Int. J. Energy Res. , 2015, 39(5): 607-620
doi: 10.1002/er.3255
QIAN Q H, ASINGER P A, LEE M J, HAN G, RODRIGUEZ K M, LIN S, BENEDETTI F M, WU A X, CHI W S, SMITH Z P. MOF-based membranes for gas separations[J]. Chem. Rev. , 2020, 120(16): 8161-8266
doi: 10.1021/acs.chemrev.0c00119
LI B Z, SUO T Y, XIE S Y, XIA A Q, MA Y J, HUANG H, ZHANG X, HU Q. Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors[J]. TrAC‒Trends Anal. Chem. , 2021, 135: 116163
doi: 10.1016/j.trac.2020.116163
HALDAR R, BHATTACHARYYA S, MAJI T K. Luminescent metal-organic frameworks and their potential applications[J]. J. Chem. Sci. , 2020, 132: 1-25
doi: 10.1007/s12039-019-1689-3
TANG Y, WU H L, CAO W Q, CUI Y J, QIAN G D. Luminescent metal-organic frameworks for white LEDs[J]. Adv. Opt. Mater. , 2021, 9(23): 2001817
doi: 10.1002/adom.202001817
ZHOU H, HAN J J, CUAN J, ZHOU Y. Responsive luminescent MOF materials for advanced anticounterfeiting[J]. Chem. Eng. J. , 2022, 431(Part 2): 134170
YANG G L, JIANG X L, XU H, ZHAO B. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327
doi: 10.1002/smll.202005327
LI Y. Temperature and humidity sensors based on luminescent metal-organic frameworks[J]. Polyhedron, 2020, 179: 114413
doi: 10.1016/j.poly.2020.114413
WHELAN É, STEUBER F W, GUNNLAUGSSON T, SCHMITT W. Tuning photoactive metal-organic frameworks for luminescence and photocatalytic applications[J]. Coord. Chem. Rev., 2021, 437: 213757
doi: 10.1016/j.ccr.2020.213757
RAZAVI S A A, MORSALI A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coord. Chem. Rev. , 2020, 415: 213299
doi: 10.1016/j.ccr.2020.213299
LIU J Q, WU J, LI F M, LIU W C, LI B H, WANG J, LI Q L, YADAV R, KUMAR A. Luminescent sensing from a new Zn(Ⅱ) metal-organic framework[J]. RSC Adv. , 2016, 6(37): 31161-31166
doi: 10.1039/C6RA01709F
ZHANG D S, GAO Q, CHANG Z, LIU X T, ZHAO B, XUAN Z H, HU T L, ZHANG Y H, ZHU J, BU X H. Rational construction of highly tunable donor-acceptor materials based on a crystalline host-guest platform[J]. Adv. Mater. , 2018, 30(50): 1804715
doi: 10.1002/adma.201804715
CHANG Z. Recent progress in host-guest metal-organic frameworks: Construction and emergent properties[J]. Coord. Chem. Rev. , 2023, 476: 214921
doi: 10.1016/j.ccr.2022.214921
KHAN S B, LEE S. Supramolecular chemistry: Host-guest molecular complexes[J]. Molecules, 2021, 26(13): 3995
doi: 10.3390/molecules26133995
KHATUA S, BISWAS P. Flexible luminescent MOF: Trapping of less stable conformation of rotational isomers, in situ guest-responsive turn-off and turn-on luminescence and mechanistic study[J]. ACS Appl. Mater. Interfaces, 2020, 12(19): 22335-22346
doi: 10.1021/acsami.0c02891
PAL T K. Metal-organic framework (MOF)-based fluorescence "turn-on" sensors[J]. Mater. Chem. Front. , 2023, 7(3): 405-441
doi: 10.1039/D2QM01070D
LIAO P Y, LI J X, LIU J C, XIONG Q, RUAN Z Y, LI T, DENG W, JIANG S D, JIA J H, TONG M L. Radical-induced photochromic silver(Ⅰ) metal-organic frameworks: alternative topology, dynamic photoluminescence and efficient photothermal conversion modulated by anionic guests[J]. Angew. Chem. Int. Ed. , 2024, 136(27): e202401448
doi: 10.1002/ange.202401448
SANG X, LIU Q, LANG J P. Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands[J]. Chinese J. Inorg. Chem. , 2024, 40(11): 2124-2132
DU L Y, SHI W J, HOU L, WANG Y Y, SHI Q Z, ZHU Z H. Solvent or temperature induced diverse coordination polymers of silver(Ⅰ) sulfate and bipyrazole systems: Syntheses, crystal structures, luminescence, and sorption properties[J]. Inorg. Chem. , 2013, 52(24): 14018-14027
doi: 10.1021/ic401765r
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
Ruoqian Zhang , Chaoqun Mu , Yali Hou , Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Qianping Li , Hua Guan , Changfeng Wan , Yonghai Song , Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070
Wei GUO , Zhuoyi GUO , Xiaoxin LI , Wei ZHANG , Juanzhi YAN , Tingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Xiaohang JIN , Qi LIU , Jianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Symmetry codes: A-1+x, +y, +z; B-1/2+x, 1/2-y, -1/2+z; C 1/2+x, 1/2-y, 1/2+z; D 1+x, +y, +z; E 1/2+x, 1/2-y, -1/2+z; The red dashed line represents hydrogen bonding, and the blue dashed line represents the C—F…π interaction.
Symmetry codes: A 1-x, 1-y, 1-z; B-1/4+y, 3/4-x, -1/4+z; C 5/4-y, -1/4+x, 5/4-z; D 3/4-y, -1/4+x, 7/4-z; E -1/4+y, 5/4-x, 5/4-z.