Citation: Huafeng SHI. Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378 shu

Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance

  • Received Date: 21 October 2024
    Revised Date: 3 June 2025

Figures(7)

  • The nickel foam (NF)-supported MnCoNi layered double hydroxide (LDH) nano-needle array was used as a substrate. Through a three-step wet-chemical route, a Co-Ni-S polymetallic sulfide-supported MnCoNi LDH@Co-Ni-S/NF amorphous hollow-polyhedral nanocomposite was successfully synthesized, demonstrating outstanding electrocatalytic oxygen evolution performance. The results of electrochemical tests showed that the material could output a current density of 50 mA·cm-2 with an overpotential of only 248 mV in a 1.0 mol·L-1 KOH solution. In addition, the constructed MnCoNi LDH@Co-Ni-S hollow polyhedral electrode could operate continuously and stably for at least 20 h under different current densities of 40, 60, and 80 mA·cm-2, fully demonstrating that this electrode had good long-term stability.
  • 加载中
    1. [1]

      FIORI G, BONACCORSO F, IANNACCONE G, PALACIOS T, NEUMAIER D, SEABAUGH A. Electronics based on two-dimensional materials[J]. Nat. Nanotechnol., 2014,9:768-779. doi: 10.1038/nnano.2014.207

    2. [2]

      XU S J, LEI Z Y, WU P Y. Facile preparation of 3D MoS2/MoSe2 nanosheet-graphene networks as efficient electrocatalysts for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3:16337-16347. doi: 10.1039/C5TA02637G

    3. [3]

      DENG C, DING F, LI X Y, GUO Y F, NI W, YAN Y M. Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution[J]. J. Mater. Chem. A, 2015,4:59-66.  

    4. [4]

      LIN H F, LI H Y, LI Y Y, LIU J L, WANG X, WANG L. Hierarchical CoS/MoS2 and Co3S4/MoS2/Ni2P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media[J]. J. Mater. Chem. A, 2017,5:25410-25419. doi: 10.1039/C7TA08760H

    5. [5]

      SUBRAMANI V, SONG C, ANPO M, ANDRESEN J M. Recent advances in catalytic production of hydrogen from renewable sources[J]. Catal. Today, 2007,129:263-264. doi: 10.1016/j.cattod.2007.08.016

    6. [6]

      DINCER I, AYDIN M I. New paradigms in sustainable energy systems with hydrogen[J]. Energy Convers. Manag., 2023,283116950. doi: 10.1016/j.enconman.2023.116950

    7. [7]

      CHEN J, ZHOU W J, JIA J, WAN B A, LU J, XIONG T L. Porous molybdenum carbide microspheres as efficient binder-free electrocatalysts for suspended hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2017,42:6448-6454. doi: 10.1016/j.ijhydene.2016.12.048

    8. [8]

      FANG S L, CHOU T C, SAMIREDDI S, CHEN K H, CHEN L C, CHEN W F. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide[J]. R. Soc. Open Sci., 2017,4161016. doi: 10.1098/rsos.161016

    9. [9]

      PENG Z, ZHANG Q, QI G, ZHANG H, LIU Q, HU G. Nanostructured Pt@RuO catalyst for boosting overall acidic seawater splitting[J]. Chin. J. Struct. Chem., 2024,43100191.  

    10. [10]

      WANG M, CHEN L, SUN L C. Recent progress in electrochemical hydrogen production with earth- abundant metal complexes as catalysts[J]. Energy Environ. Sci., 2012,5:6763-6768. doi: 10.1039/c2ee03309g

    11. [11]

      DONG C L, ZHANG X L, XU J, SI R, SHENG J, LUO J. Rutheniumdoped cobalt - chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer[J]. Small, 2020,16:1-7.  

    12. [12]

      LIU S J, ZHU J, SUN M, MA Z X, HU K, NAKAJIMA T. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets[J]. J. Mater. Chem. A, 2020,8:2490-2497. doi: 10.1039/C9TA12768B

    13. [13]

      YUAN F F, WEI J D, QIN G X, NI Y H. Carbon cloth supported hierarchical core-shell NiCo2S4@CoNi-LDH nanoarrays as catalysts for efficient oxygen evolution reaction in alkaline solution[J]. J. Alloy. Compd., 2020,830154658. doi: 10.1016/j.jallcom.2020.154658

    14. [14]

      ZHANG J T, YU L, CHEN Y, LU X F, GAO S Y, LOU X W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Adv. Mater., 2020,32:6432-6438.

    15. [15]

      HUANG Z F, SONG J J, DU Y H, XI S B, DOU S Y, LOU X W. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nat. Energy, 2019,4:329-338. doi: 10.1038/s41560-019-0355-9

    16. [16]

      LIU Y Q, ZHANG M, HU D, LI R Q, HU K, YAN K. Ar plasma-exfoliated ultrathin NiCo - layered double hydroxide nanosheets for enhanced oxygen evolution[J]. ACS Appl. Energy Mater., 2019,2:1162-1168. doi: 10.1021/acsaem.8b01717

    17. [17]

      DUTTA S, INDRA A, FENG Y, SONG T, PAIK U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9:33766-33774. doi: 10.1021/acsami.7b07984

    18. [18]

      LIU J, WANG J S, ZHANG B, RUAN Y J, LV L, JIANG J J. Hierarchical NiCo 2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall - water - splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9:15364-15372. doi: 10.1021/acsami.7b00019

    19. [19]

      CHEN L, CHEN H, WU L, LI G, TAO K, HAN L. Zeolitic imidazolate framework-derived Co3S4@NiFe-LDH core-shell heterostructure as efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl. Mater. Interfaces, 2024,16:8751-8762. doi: 10.1021/acsami.3c16683

    20. [20]

      HUANG S H, MENG Y Y, HE S M, WU M M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting[J]. Adv. Funct. Mater., 2017,27:1-10.  

    21. [21]

      HAO J H, LUO W, YANG W S, LI L H, SHI W D. Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium co-doped CoS2 electrocatalyst[J]. J. Mater. Chem. A, 2020,8:22694-22702. doi: 10.1039/D0TA07163C

    22. [22]

      GUO Y N, TANG J, WANG Z L, KANG Y M, BANDO Y S, YAMAUCHI Y. Elaborately assembled core - shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting[J]. Nano Energy, 2018,47:494-502. doi: 10.1016/j.nanoen.2018.03.012

    23. [23]

      XU W C, WANG H X. Earth-abundant amorphous catalysts for electrolysis of water[J]. Chin. J. Catal., 2017,38:991-1005. doi: 10.1016/S1872-2067(17)62810-9

    24. [24]

      LI B L, DAI L L, SU G L, XIA Z Q, YE Y X, LI Z S. Construction of defective MnCo-LDH nanoflowers with high activity for overall water splitting[J]. Fuel, 2024,364130961. doi: 10.1016/j.fuel.2024.130961

    25. [25]

      FENG X T, JIAO Q Z, LIU T, LI Q, YIN M M, ZHAO Y. Facile synthesis of Co 9S8 hollow spheres as a high-performance electrocatalyst for the oxygen evolution reaction[J]. ACS Sustain. Chem. Eng., 2018,6:1863-1871. doi: 10.1021/acssuschemeng.7b03236

    26. [26]

      ZHANG H, MENG G, WEI T, DING J Y, LIU Q, LUO J, LlU X J. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets[J]. Chem. Commun., 2023,59:12144-12149. doi: 10.1039/D3CC03434H

    27. [27]

      YUAN F, ZHANG E L, LIU Z H, YANG K, ZHA Q Q, NI Y H. Hollow CoSx nanoparticles grown on FeCo - LDH microtubes for enhanced electrocatalytic performances for the oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2021,4:12211-12223. doi: 10.1021/acsaem.1c01947

    28. [28]

      SHI H F, YANG K, WANG F F, NI Y H, ZHAI M H. Hierarchical MnCo2O4 nanowire@NiFe layered double hydroxide nanosheet heterostructures on Ni foam for overall water splitting[J]. CrystEngComm, 2021,23:7141-7150. doi: 10.1039/D1CE01037A

    29. [29]

      LIU W J, LIU W X, HOU T, DING J Y, WANG Z G, YIN R L, SAN X Y, FENG L G, LUO J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting[J]. Nano Res., 2024,17:4797-4806. doi: 10.1007/s12274-024-6433-8

    30. [30]

      WANG M, WANG M, FU Y M, SHEN S H. Cobalt oxide and carbon modified hematite nanorod arrays for improved photoelectrochemical water splitting[J]. Chin. Chem. Lett., 2017,28:2207-2211. doi: 10.1016/j.cclet.2017.11.037

    31. [31]

      WANG H T, LEE H W, DENG Y, LU Z Y, HUA P C, LIU Y Y. Bifunctional non - noble metal oxide nanoparticle electrocatalysts through lithium - induced conversion for overall water splitting[J]. Nat. Commun., 2015,6:7261-7269. doi: 10.1038/ncomms8261

    32. [32]

      WANG F F, ZHANG K J, ZHA Q Q, NI Y H. Honeycomb-like Ni-Mo-S on Ni foam as superior bifunctional electrocatalyst for hydrogen evolution and urea oxidation[J]. J. Alloy. Compd., 2022,899163346. doi: 10.1016/j.jallcom.2021.163346

    33. [33]

      LI X L, ZHA Q Q, NI Y H. Ni - Fe phosphate/Ni foam electrode: Facile hydrothermal synthesis and ultralong oxygen evolution reaction durability[J]. ACS Sustain. Chem. Eng., 2019,7:18332-18340. doi: 10.1021/acssuschemeng.9b03711

    34. [34]

      LIU H, MA F X, XU C Y, YANG L, DU Y, WANG P P. Sulfurizing-induced hollowing of Co9S8 microplates with nanosheet units for highly efficient water oxidation[J]. ACS Appl. Mater. Interfaces, 2017,9:11634-11641. doi: 10.1021/acsami.7b00899

    35. [35]

      ZHONG J, WU T, WU Q, DU S, CHEN D C, CHEN B. N-and S-codoped graphene sheet - encapsulated Co9S8nanomaterials as excellent electrocatalysts for the oxygen evolution reaction[J]. J. Power Sources, 2019,417:90-98. doi: 10.1016/j.jpowsour.2019.02.024

    36. [36]

      ZHANG X P, SI C D, GUO X X, KONG R M, QU F L. A MnCo2S4 nanowire array as an earth- abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions[J]. J. Mater. Chem. A, 2017,5:17211-17215. doi: 10.1039/C7TA04804A

    37. [37]

      JADHAV H S, ROY A, THORAT G M, CHUNG W J, SEO J G. Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction[J]. Ind. Eng. Chem., 2019,71:452-459. doi: 10.1016/j.jiec.2018.12.002

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Jingping Li Suding Yan Jiaxi Wu Qiang Cheng Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return