Citation: Zhicheng JU, Wenxuan FU, Baoyan WANG, Ao LUO, Jiangmin JIANG, Yueli SHI, Yongli CUI. MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363 shu

MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage

  • Corresponding author: Yongli CUI, 4018@cumt.edu.cn
  • Received Date: 10 October 2024
    Revised Date: 17 February 2025

Figures(13)

  • Metal-organic framework (MOF)-based nickel-cobalt bimetallic sulfides microspheres were prepared by solvothermal and sulfurization methods, and trace nitrogen-doped carbon (NC)-coated Ni-Co-S@NC anode for sodium-ion batteries were further synthesized by high-temperature pyrolysis using dopamine hydrochloride as the organic carbon source. This surface modification can effectively improve the conductivity, structure, and interface stability of the synthesized materials, which helps to enhance the cycling stability of the materials, thereby improving the cycling stability and thermal stability. The Ni-Co-S@NC-0.5 anode with a carbon layer thickness of about 5 nm had an excellent long cycling performance with a 381.8 mAh·g-1 reversible capacity at 1 A·g-1 after 1 000 cycles, a capacity retention rate of 75.2%, and correspondingly the capacity decay per cycle was only 0.126 mAh·g-1. The Ni-Co-S@NC-0.5||NVP/C (NVP: Na3V2(PO4)3) full cell assembled had a reversible specific capacity of 386.2 mAh· g-1 with 88.6 % capacity retention at 1 A·g-1 after 100 cycles, and a stable Coulombic efficiency of 98.1%. It is found for the sodium ion dynamics behavior that the sodium storage mechanism of the Ni-Co-S@NC-0.5 anode is mainly controlled by pseudocapacitive behavior, indicating that the sodium ion storage process is more biased towards surface reactions, which is conducive to the shortening of the ion transport path and the realization of rapid sodium storage. The diffusion coefficients of sodium ions were between 10-11~10-13 cm2·s-1, and the charge transfer impedance value was a relatively minimum (36.7 Ω) of all.
  • 加载中
    1. [1]

      LIU Y Z, YANG C H, ZHANG Q Y, LIU M L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries[J]. Energy Storage Mater., 2019,22:66-95. doi: 10.1016/j.ensm.2019.01.001

    2. [2]

      XU S Y, WANG Y P, LI Q M, YAN J W, HUANG H, ZHANG C C, ZHANG X Y, JIANG F Y, ZHOU Y L. High-capacity and amorphous MoS3 decorated hollow Co9S8 nano-spheres composites for boosted sodium ion storage[J]. Mater. Today Commun., 2024,38108018. doi: 10.1016/j.mtcomm.2023.108018

    3. [3]

      WEI X J, WANG X P, TAN X, AN Q Y, MAI L Q. Nanostructured conversion-type negative electrode materials for low-cost and high-performance aodium-ion batteries[J]. Adv. Funct. Mater., 2018,28(46)1804458. doi: 10.1002/adfm.201804458

    4. [4]

      HE Y, LIU C L, XIE Z K, XIAOKAITI P, CHEN G, FENG Z B, KASAI Y, ABUDULA A, GUAN G Q. Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries[J]. Adv. Compos. Hybrid Mater., 2023,6(3)85. doi: 10.1007/s42114-023-00661-0

    5. [5]

      ZHOU Q, LIU L, HUANG Z F, YI L G, WANG X Y, CAO G Z. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries[J]. J. Mater. Chem. A, 2016,4(15):5505-5516. doi: 10.1039/C6TA01497F

    6. [6]

      GUAN B Y, YU L, WANG X, SONG S Y, LOU X W. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Adv. Mater., 2017,29(6)1605051. doi: 10.1002/adma.201605051

    7. [7]

      YU X Y, LOU X W. Mixed metal sulfides for electrochemical energy storage and conversion[J]. Adv. Energy Mater., 2018,8(3)1701592. doi: 10.1002/aenm.201701592

    8. [8]

      MA W L, LIU S X, ZHOU Y, WU P, CAO X, ZHU X S, WEI S H, ZHOU Y M. Room-temperature solid-state reaction-assisted strategy to fabricate nanocomposites of N, S-codoped carbon confined FeCoS2 as high-performance anode materials for sodium-ion batteries[J]. Chinese J. Inorg. Chem., 2024,40(1):145-154.

    9. [9]

      WANG F, HAN F, HE Y L, ZHANG J, WU H, TAO J, ZHANG C Z, ZHANG F Q, LIU J S. Unraveling the voltage failure mechanism in metal sulfide anodes for sodium storage and improving their long cycle life by sulfur-doped carbon protection[J]. Adv. Funct. Mater., 2021,31(3)2007266. doi: 10.1002/adfm.202007266

    10. [10]

      LU X F, FANG Y J, LUAN D Y, LOU X W D. Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review[J]. Nano Lett., 2021,21(4):1555-1565. doi: 10.1021/acs.nanolett.0c04898

    11. [11]

      WANG Q H, GAO F, XU B Y, CAI F X, ZHAN F P, GAO F, WANG Q X. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor[J]. Chem. Eng. J., 2017,327:387-396. doi: 10.1016/j.cej.2017.06.124

    12. [12]

      LI J X, ZHAO Y, XUE J J, HE P T, WANG L. Preparation and electrocatalytic property of cobalt sulfide/porous carbon composite catalyst derived from ZIF67[J]. Chinese J. Inorg. Chem., 2019,35(8):1363-1370.

    13. [13]

      YANG X H, GONG M, LIU Z, HUANGFU C, YAN Y C, CHI C L, LIN Y Q, QI B, WANG G W, CAO K, LI X, WEI T, FAN Z J. Multi-dimensional assembly of ZnO nanodots in the reticular carbon nanofibers for high-performance lithium-ion batteries[J]. Carbon, 2024,223119001.

    14. [14]

      LI J Z, WANG L L, LI L, LV C X, ZATOVSKY I V, HAN W. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal-aspergillus niger bioleaching strategy[J]. ACS Appl. Mater. Interfaces, 2019,11(8):8072-8080.

    15. [15]

      CHI C L, LIU Z, WANG G W, QI B, QIU Z P, YAN Y C, HUANGFU C, LU X L, YANG X H, GONG M, CAO K, WEI T, FAN Z J. Graphene oxide block derived edge-nitrogen doped quasi-graphite for high K+ intercalation capacity and excellent rate performance[J]. Adv. Energy Mater., 2023,13(46)2302055. doi: 10.1002/aenm.202302055

    16. [16]

      YANG S H, PARK S K, KIM J K, KANG Y C. A MOF-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries[J]. J. Mater. Chem. A, 2019,7(22):13751-13761. doi: 10.1039/C9TA03873F

    17. [17]

      LOU X W, ARCHER L A, YANG Z C. Hollow micro-/nanostructures: Synthesis and applications[J]. Adv. Mater., 2008,20(21):3987-4019. doi: 10.1002/adma.200800854

    18. [18]

      HE S H, LI Z P, WANG J Q. Bimetallic MOFs with tunable morphology: Synthesis and enhanced lithium storage properties[J]. J. Solid State Chem., 2022,307122726. doi: 10.1016/j.jssc.2021.122726

    19. [19]

      ZHANG W F, WANG L, DING G C, YANG Y J, YANG G, XU J, XU N N, XIE L L, HAN Q, ZHU L M, CAO X Y, MA J M. Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity[J]. Chin. Chem. Lett., 2023,34(2)107328. doi: 10.1016/j.cclet.2022.03.051

    20. [20]

      ZHOU J J, JI W X, XU L, YANG Y, WANG W Q, DING H L, XU X C, WANG W W, ZHANG P L, HUA Z L, CHEN L Y. Controllable transformation of CoNi-MOF-74 on Ni foam into hierarchical-porous Co(OH)2/Ni(OH)2 micro-rods with ultra-high specific surface area for energy storage[J]. Chem. Eng. J., 2022,428132123. doi: 10.1016/j.cej.2021.132123

    21. [21]

      CHEN H Y, HUO Y Q, CAI K Z, TENG Y. Controllable preparation and capacitance performance of bimetal Co/Ni-MOF[J]. Synth. Met., 2021,276116761. doi: 10.1016/j.synthmet.2021.116761

    22. [22]

      DENG J, GONG Q F, YE H L, FENG K, ZHOU J H, ZHA C Y, WU J H, CHEN J M, ZHONG J, LI Y G. Rational synthesis and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage[J]. ACS Nano, 2018,12(2):1829-1836. doi: 10.1021/acsnano.7b08625

    23. [23]

      JIANG Y L, ZOU G Q, HONG W W, ZHANG Y, ZHANG Y, SHUAI H L, XU W, HOU H S, JI X B. N-Rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries[J]. Nanoscale, 2018,10(39):18786-18794. doi: 10.1039/C8NR05652H

    24. [24]

      FAN X Q, ZHOU Y, JIN X K, SONG R B, LI Z H, ZHANG Q C. Carbon material-based anodes in the microbial fuel cells[J]. Carbon Energy, 2021,3(3):449-472. doi: 10.1002/cey2.113

    25. [25]

      ZHANG X, LIU X J, WANG G, WANG H. Cobalt disulfide nanoparticles/graphene/carbon nanotubes aerogels with superior performance for lithium and sodium storage[J]. J. Colloid Interface Sci., 2017,505:23-31. doi: 10.1016/j.jcis.2017.05.028

    26. [26]

      ZHANG X, MA T, FANG T, GAO Y Z, GAO S, WANG W W, LIAO L X. A novel MoS2@C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage[J]. J. Alloy. Compd., 2020,818152821. doi: 10.1016/j.jallcom.2019.152821

    27. [27]

      ZHU X M, JIANG X Y, LIU X L, XIAO L F, AI X P, YANG H X, CAO Y L. Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries[J]. Ceram. Int., 2017,43(13):9630-9635.

    28. [28]

      TANG J, NI S B, CHAO D L, LIU J L, YANG X L, ZHAO J B. High-rate and ultra-stable Na-ion storage for Ni3S2 nanoarrays via self-adaptive pseudocapacitance[J]. Electrochim. Acta, 2018,265:709-716.

    29. [29]

      LIU R H, ZHANG Y H, WANG D D, XU L J, LUO S H, WANG Q, LIU X. Microwave-assisted synthesis of self-assembled camellia-like CuS superstructure of ultra-thin nanosheets and exploration of its sodium ion storage properties[J]. J. Electroanal. Chem., 2021,898115607. doi: 10.1016/j.jelechem.2021.115607

    30. [30]

      ZHAO F P, GONG Q F, TRAYNOR B, ZHANG D, LI J J, YE H L, CHEN F J, HAN N, WANG Y Y, SUN X H, LI Y G. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries[J]. Nano Res., 2016,9(10):3162-3170. doi: 10.1007/s12274-016-1198-3

    31. [31]

      CAO D W, KANG W P, WANG W H, SUN K A, WANG Y Y, MA P, SUN D F. Okra-like Fe7S8/C@ZnS/N-C@C with core-double-shelled structures as robust and high-rate sodium anode[J]. Small, 2020,16190764.

    32. [32]

      ZHANG C Z, HAN F, MA J M, LI Z, ZHANG F Q, XU S H, LIU H B, LI X K, LIU J S, LU A H. Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage[J]. J. Mater. Chem. A, 2019,7:11771-11781.

    33. [33]

      ZHOU Y L, YAN D, XU H Y, FENG J K, JIANG X L, YUE J, YANG J, QIAN Y T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries[J]. Nano Energy, 2015,12:528-537.

    34. [34]

      ZHANG G H, HOU S C, ZHANG H, ZENG W, YAN F L, LI C C, DUAN H G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode[J]. Adv. Mater., 2015,27(14):2400-2405.

    35. [35]

      COOK J B, KIM H S, LIN T C, LAI C H, DUNN B, TOLBERT S H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes[J]. Adv. Energy Mater., 2017,7(2)1601283.

    36. [36]

      XIAO D J, LIU S Q, ZHAO K M, YE G Y, SU Y K, ZHU W W, HE Z. Metal-organic framework-derived ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe nanospheres as enhanced anode materials for sodium-ion batteries[J]. Ionics, 2021,27(8):3327-3337.

    37. [37]

      FAN S W, LI G D, CAI F P, YANG G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries[J]. Chem.?Eur. J., 2020,26(39):8579-8587.

    38. [38]

      LIM Y V, HUANG S Z, HU J P, KONG D Z, WANG Y, XU T T, ANG L K, YANG H Y. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation[J]. Small Methods, 2019,3(7)1900112.

    39. [39]

      ZHANG J L, WANG W H, LI B H. Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase[J]. Chem. Eng. J., 2020,392123810.

  • 加载中
    1. [1]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    7. [7]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    9. [9]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    13. [13]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    16. [16]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(14)
  • Abstract views(1073)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return