Citation: Zhicheng JU, Wenxuan FU, Baoyan WANG, Ao LUO, Jiangmin JIANG, Yueli SHI, Yongli CUI. MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363 shu

MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage

  • Corresponding author: Yongli CUI, 4018@cumt.edu.cn
  • Received Date: 10 October 2024
    Revised Date: 17 February 2025

Figures(13)

  • Metal-organic framework (MOF)-based nickel-cobalt bimetallic sulfides microspheres were prepared by solvothermal and sulfurization methods, and trace nitrogen-doped carbon (NC)-coated Ni-Co-S@NC anode for sodium-ion batteries were further synthesized by high-temperature pyrolysis using dopamine hydrochloride as the organic carbon source. This surface modification can effectively improve the conductivity, structure, and interface stability of the synthesized materials, which helps to enhance the cycling stability of the materials, thereby improving the cycling stability and thermal stability. The Ni-Co-S@NC-0.5 anode with a carbon layer thickness of about 5 nm had an excellent long cycling performance with a 381.8 mAh·g-1 reversible capacity at 1 A·g-1 after 1 000 cycles, a capacity retention rate of 75.2%, and correspondingly the capacity decay per cycle was only 0.126 mAh·g-1. The Ni-Co-S@NC-0.5||NVP/C (NVP: Na3V2(PO4)3) full cell assembled had a reversible specific capacity of 386.2 mAh· g-1 with 88.6 % capacity retention at 1 A·g-1 after 100 cycles, and a stable Coulombic efficiency of 98.1%. It is found for the sodium ion dynamics behavior that the sodium storage mechanism of the Ni-Co-S@NC-0.5 anode is mainly controlled by pseudocapacitive behavior, indicating that the sodium ion storage process is more biased towards surface reactions, which is conducive to the shortening of the ion transport path and the realization of rapid sodium storage. The diffusion coefficients of sodium ions were between 10-11~10-13 cm2·s-1, and the charge transfer impedance value was a relatively minimum (36.7 Ω) of all.
  • 加载中
    1. [1]

      LIU Y Z, YANG C H, ZHANG Q Y, LIU M L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries[J]. Energy Storage Mater., 2019,22:66-95. doi: 10.1016/j.ensm.2019.01.001

    2. [2]

      XU S Y, WANG Y P, LI Q M, YAN J W, HUANG H, ZHANG C C, ZHANG X Y, JIANG F Y, ZHOU Y L. High-capacity and amorphous MoS3 decorated hollow Co9S8 nano-spheres composites for boosted sodium ion storage[J]. Mater. Today Commun., 2024,38108018. doi: 10.1016/j.mtcomm.2023.108018

    3. [3]

      WEI X J, WANG X P, TAN X, AN Q Y, MAI L Q. Nanostructured conversion-type negative electrode materials for low-cost and high-performance aodium-ion batteries[J]. Adv. Funct. Mater., 2018,28(46)1804458. doi: 10.1002/adfm.201804458

    4. [4]

      HE Y, LIU C L, XIE Z K, XIAOKAITI P, CHEN G, FENG Z B, KASAI Y, ABUDULA A, GUAN G Q. Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries[J]. Adv. Compos. Hybrid Mater., 2023,6(3)85. doi: 10.1007/s42114-023-00661-0

    5. [5]

      ZHOU Q, LIU L, HUANG Z F, YI L G, WANG X Y, CAO G Z. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries[J]. J. Mater. Chem. A, 2016,4(15):5505-5516. doi: 10.1039/C6TA01497F

    6. [6]

      GUAN B Y, YU L, WANG X, SONG S Y, LOU X W. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Adv. Mater., 2017,29(6)1605051. doi: 10.1002/adma.201605051

    7. [7]

      YU X Y, LOU X W. Mixed metal sulfides for electrochemical energy storage and conversion[J]. Adv. Energy Mater., 2018,8(3)1701592. doi: 10.1002/aenm.201701592

    8. [8]

      MA W L, LIU S X, ZHOU Y, WU P, CAO X, ZHU X S, WEI S H, ZHOU Y M. Room-temperature solid-state reaction-assisted strategy to fabricate nanocomposites of N, S-codoped carbon confined FeCoS2 as high-performance anode materials for sodium-ion batteries[J]. Chinese J. Inorg. Chem., 2024,40(1):145-154.

    9. [9]

      WANG F, HAN F, HE Y L, ZHANG J, WU H, TAO J, ZHANG C Z, ZHANG F Q, LIU J S. Unraveling the voltage failure mechanism in metal sulfide anodes for sodium storage and improving their long cycle life by sulfur-doped carbon protection[J]. Adv. Funct. Mater., 2021,31(3)2007266. doi: 10.1002/adfm.202007266

    10. [10]

      LU X F, FANG Y J, LUAN D Y, LOU X W D. Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review[J]. Nano Lett., 2021,21(4):1555-1565. doi: 10.1021/acs.nanolett.0c04898

    11. [11]

      WANG Q H, GAO F, XU B Y, CAI F X, ZHAN F P, GAO F, WANG Q X. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor[J]. Chem. Eng. J., 2017,327:387-396. doi: 10.1016/j.cej.2017.06.124

    12. [12]

      LI J X, ZHAO Y, XUE J J, HE P T, WANG L. Preparation and electrocatalytic property of cobalt sulfide/porous carbon composite catalyst derived from ZIF67[J]. Chinese J. Inorg. Chem., 2019,35(8):1363-1370.

    13. [13]

      YANG X H, GONG M, LIU Z, HUANGFU C, YAN Y C, CHI C L, LIN Y Q, QI B, WANG G W, CAO K, LI X, WEI T, FAN Z J. Multi-dimensional assembly of ZnO nanodots in the reticular carbon nanofibers for high-performance lithium-ion batteries[J]. Carbon, 2024,223119001.

    14. [14]

      LI J Z, WANG L L, LI L, LV C X, ZATOVSKY I V, HAN W. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal-aspergillus niger bioleaching strategy[J]. ACS Appl. Mater. Interfaces, 2019,11(8):8072-8080.

    15. [15]

      CHI C L, LIU Z, WANG G W, QI B, QIU Z P, YAN Y C, HUANGFU C, LU X L, YANG X H, GONG M, CAO K, WEI T, FAN Z J. Graphene oxide block derived edge-nitrogen doped quasi-graphite for high K+ intercalation capacity and excellent rate performance[J]. Adv. Energy Mater., 2023,13(46)2302055. doi: 10.1002/aenm.202302055

    16. [16]

      YANG S H, PARK S K, KIM J K, KANG Y C. A MOF-mediated strategy for constructing human backbone-like CoMoS3@N-doped carbon nanostructures with multiple voids as a superior anode for sodium-ion batteries[J]. J. Mater. Chem. A, 2019,7(22):13751-13761. doi: 10.1039/C9TA03873F

    17. [17]

      LOU X W, ARCHER L A, YANG Z C. Hollow micro-/nanostructures: Synthesis and applications[J]. Adv. Mater., 2008,20(21):3987-4019. doi: 10.1002/adma.200800854

    18. [18]

      HE S H, LI Z P, WANG J Q. Bimetallic MOFs with tunable morphology: Synthesis and enhanced lithium storage properties[J]. J. Solid State Chem., 2022,307122726. doi: 10.1016/j.jssc.2021.122726

    19. [19]

      ZHANG W F, WANG L, DING G C, YANG Y J, YANG G, XU J, XU N N, XIE L L, HAN Q, ZHU L M, CAO X Y, MA J M. Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity[J]. Chin. Chem. Lett., 2023,34(2)107328. doi: 10.1016/j.cclet.2022.03.051

    20. [20]

      ZHOU J J, JI W X, XU L, YANG Y, WANG W Q, DING H L, XU X C, WANG W W, ZHANG P L, HUA Z L, CHEN L Y. Controllable transformation of CoNi-MOF-74 on Ni foam into hierarchical-porous Co(OH)2/Ni(OH)2 micro-rods with ultra-high specific surface area for energy storage[J]. Chem. Eng. J., 2022,428132123. doi: 10.1016/j.cej.2021.132123

    21. [21]

      CHEN H Y, HUO Y Q, CAI K Z, TENG Y. Controllable preparation and capacitance performance of bimetal Co/Ni-MOF[J]. Synth. Met., 2021,276116761. doi: 10.1016/j.synthmet.2021.116761

    22. [22]

      DENG J, GONG Q F, YE H L, FENG K, ZHOU J H, ZHA C Y, WU J H, CHEN J M, ZHONG J, LI Y G. Rational synthesis and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage[J]. ACS Nano, 2018,12(2):1829-1836. doi: 10.1021/acsnano.7b08625

    23. [23]

      JIANG Y L, ZOU G Q, HONG W W, ZHANG Y, ZHANG Y, SHUAI H L, XU W, HOU H S, JI X B. N-Rich carbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries[J]. Nanoscale, 2018,10(39):18786-18794. doi: 10.1039/C8NR05652H

    24. [24]

      FAN X Q, ZHOU Y, JIN X K, SONG R B, LI Z H, ZHANG Q C. Carbon material-based anodes in the microbial fuel cells[J]. Carbon Energy, 2021,3(3):449-472. doi: 10.1002/cey2.113

    25. [25]

      ZHANG X, LIU X J, WANG G, WANG H. Cobalt disulfide nanoparticles/graphene/carbon nanotubes aerogels with superior performance for lithium and sodium storage[J]. J. Colloid Interface Sci., 2017,505:23-31. doi: 10.1016/j.jcis.2017.05.028

    26. [26]

      ZHANG X, MA T, FANG T, GAO Y Z, GAO S, WANG W W, LIAO L X. A novel MoS2@C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage[J]. J. Alloy. Compd., 2020,818152821. doi: 10.1016/j.jallcom.2019.152821

    27. [27]

      ZHU X M, JIANG X Y, LIU X L, XIAO L F, AI X P, YANG H X, CAO Y L. Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries[J]. Ceram. Int., 2017,43(13):9630-9635.

    28. [28]

      TANG J, NI S B, CHAO D L, LIU J L, YANG X L, ZHAO J B. High-rate and ultra-stable Na-ion storage for Ni3S2 nanoarrays via self-adaptive pseudocapacitance[J]. Electrochim. Acta, 2018,265:709-716.

    29. [29]

      LIU R H, ZHANG Y H, WANG D D, XU L J, LUO S H, WANG Q, LIU X. Microwave-assisted synthesis of self-assembled camellia-like CuS superstructure of ultra-thin nanosheets and exploration of its sodium ion storage properties[J]. J. Electroanal. Chem., 2021,898115607. doi: 10.1016/j.jelechem.2021.115607

    30. [30]

      ZHAO F P, GONG Q F, TRAYNOR B, ZHANG D, LI J J, YE H L, CHEN F J, HAN N, WANG Y Y, SUN X H, LI Y G. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries[J]. Nano Res., 2016,9(10):3162-3170. doi: 10.1007/s12274-016-1198-3

    31. [31]

      CAO D W, KANG W P, WANG W H, SUN K A, WANG Y Y, MA P, SUN D F. Okra-like Fe7S8/C@ZnS/N-C@C with core-double-shelled structures as robust and high-rate sodium anode[J]. Small, 2020,16190764.

    32. [32]

      ZHANG C Z, HAN F, MA J M, LI Z, ZHANG F Q, XU S H, LIU H B, LI X K, LIU J S, LU A H. Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage[J]. J. Mater. Chem. A, 2019,7:11771-11781.

    33. [33]

      ZHOU Y L, YAN D, XU H Y, FENG J K, JIANG X L, YUE J, YANG J, QIAN Y T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries[J]. Nano Energy, 2015,12:528-537.

    34. [34]

      ZHANG G H, HOU S C, ZHANG H, ZENG W, YAN F L, LI C C, DUAN H G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode[J]. Adv. Mater., 2015,27(14):2400-2405.

    35. [35]

      COOK J B, KIM H S, LIN T C, LAI C H, DUNN B, TOLBERT S H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes[J]. Adv. Energy Mater., 2017,7(2)1601283.

    36. [36]

      XIAO D J, LIU S Q, ZHAO K M, YE G Y, SU Y K, ZHU W W, HE Z. Metal-organic framework-derived ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe nanospheres as enhanced anode materials for sodium-ion batteries[J]. Ionics, 2021,27(8):3327-3337.

    37. [37]

      FAN S W, LI G D, CAI F P, YANG G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries[J]. Chem.?Eur. J., 2020,26(39):8579-8587.

    38. [38]

      LIM Y V, HUANG S Z, HU J P, KONG D Z, WANG Y, XU T T, ANG L K, YANG H Y. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation[J]. Small Methods, 2019,3(7)1900112.

    39. [39]

      ZHANG J L, WANG W H, LI B H. Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase[J]. Chem. Eng. J., 2020,392123810.

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(1)
  • Abstract views(55)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return