Citation: Hengyi ZHU, Liyun JU, Haoyue ZHANG, Jiaxin DU, Yutong XIE, Li SONG, Yachao JIN, Mingdao ZHANG. Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358 shu

Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery

  • Corresponding author: Mingdao ZHANG, matchlessjimmy@163.com
  • Received Date: 7 October 2024
    Revised Date: 21 February 2025

Figures(5)

  • An efficient interlocking process was developed, including acid leaching, co-precipitation, and heat treatment, to regenerate waste LiNi0.5Co0.2Mn0.3O2 (NCM523) materials. DL-tartaric acid and formic acid were used as leaching systems, and the leaching efficiencies of Li, Ni, Co, and Mn reached about 98%. The leaching solution was added to the oxalic acid solution for a co-precipitation reaction, and then the regeneration of the material was realized through heat treatment. The regenerated NCM523 material exhibited an excellent layered structure and uniform elemental distribution. When employed as a cathode material for LIBs, the regenerated NCM523 exhibited a discharge-specific capacity of 168.5 mAh·g-1 at 0.1C (18 mA·g-1), which is comparable to the performance of fresh NCM523. Furthermore, the regenerated NCM523 demonstrated a capacity retention of 93.09% after 100 cycles at 0.5C.
  • 加载中
    1. [1]

      GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. J. Am. Chem. Soc., 2013,135(4):1167-1176. doi: 10.1021/ja3091438

    2. [2]

      MÄRKER K, REEVES P J, XU C, GRIFFITH K J, GREY C P. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling[J]. Chem. Mater., 2019,31(7):2545-2554. doi: 10.1021/acs.chemmater.9b00140

    3. [3]

      ZHANG W H, LIANG L W, ZHAO F, LIU Y, HOU L R, YUAN C Z. Ni-rich LiNi0.8Co0.1Mn0.1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries[J]. Electrochim. Acta, 2020,340135871. doi: 10.1016/j.electacta.2020.135871

    4. [4]

      NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Manage., 2018,77:455-465. doi: 10.1016/j.wasman.2018.04.032

    5. [5]

      AHMED S, NELSON P A, GALLAGHER K G, SUSARLA N, DEES D W. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries[J]. J. Power Sources, 2017,342:733-740. doi: 10.1016/j.jpowsour.2016.12.069

    6. [6]

      WANG W Q, ZHANG Y C, ZHANG L, XU S M. Cleaner recycling of cathode material by in-situ thermite reduction[J]. J. Clean. Prod., 2020,249119340. doi: 10.1016/j.jclepro.2019.119340

    7. [7]

      HE L P, SUN S Y, SONG X F, YU J G. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Manage., 2017,64:171-181. doi: 10.1016/j.wasman.2017.02.011

    8. [8]

      YANG Y, XU S M, HE Y H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Manage., 2017,64:219-227. doi: 10.1016/j.wasman.2017.03.018

    9. [9]

      JOULIE M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. J. Power Sources, 2014,247:551-555. doi: 10.1016/j.jpowsour.2013.08.128

    10. [10]

      LEE C K, RHEE K I. Reductive leaching of cathodic active materials from lithium ion battery wastes[J]. Hydrometallurgy, 2003,68(1):5-10.

    11. [11]

      CHEN X P, FAN B L, XU L P, ZHOU T, KONG J R. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. J. Clean. Prod., 2016,112:3562-3570. doi: 10.1016/j.jclepro.2015.10.132

    12. [12]

      LI L, GE J, WU F, CHEN R J, CHEN S, WU B R. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. J. Hazard. Mater., 2010,176(1):288-293.

    13. [13]

      LI L, QU W J, ZHANG X X, LU J, CHEN R J, WU F, AMINE K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. J. Power Sources, 2015,282:544-551. doi: 10.1016/j.jpowsour.2015.02.073

    14. [14]

      ZENG X L, LI J H, SHEN B Y. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. J. Hazard. Mater., 2015,295:112-118. doi: 10.1016/j.jhazmat.2015.02.064

    15. [15]

      YU J C, MA B Z, QIU Z J, WANG C Y, CHEN Y Q. Separation and recovery of valuable metals from ammonia leaching solution of spent lithium-ion batteries[J]. ACS Sustain. Chem. Eng., 2023,11(26):9738-9750. doi: 10.1021/acssuschemeng.3c01714

    16. [16]

      GUPTA S, PANT K K, CORDER G. An environmentally benign closed-loop process for the selective recovery of valuable metals from industrial end-of-life lithium-ion batteries[J]. Chem. Eng. J., 2022,446137397. doi: 10.1016/j.cej.2022.137397

    17. [17]

      CHENG J M, ZHENG C, XU K, ZHU Y C, SONG Y, JING C Y. Sequential separation of critical metals from lithium-ion batteries based on deep eutectic solvent and electrodeposition[J]. J. Hazard. Mater., 2024,465133157. doi: 10.1016/j.jhazmat.2023.133157

    18. [18]

      MONTOYA A T, YANG Z Z, DAHL E U, PUPEK K Z, POLZIN B, DUNLOP A, VAUGHEY J T. Direct recycling of lithium-ion battery cathodes: A multi-stage annealing process to recover the pristine structure and performance[J]. ACS Sustain. Chem. Eng., 2022,10(40):13319-13324. doi: 10.1021/acssuschemeng.2c02643

    19. [19]

      HE T, DAI J J, DONG Y T, ZHU F S, WANG C, ZHEN A G, CAI Y R. Green closed-loop regeneration of ternary cathode materials from spent lithium-ion batteries through deep eutectic solvent[J]. Ionics, 2023,29(5):1721-1729. doi: 10.1007/s11581-023-04967-3

    20. [20]

      SHI Y, CHEN G, LIU F, YUE X J, CHEN Z. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes[J]. ACS Energy Lett., 2018,3(7):1683-1692. doi: 10.1021/acsenergylett.8b00833

    21. [21]

      HE L P, SUN S Y, MU Y Y, SONG X F, YU J G. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant[J]. ACS Sustain. Chem. Eng., 2017,5(1):714-721. doi: 10.1021/acssuschemeng.6b02056

    22. [22]

      TIAN Y L, AO X Q, YANG M, YANG Y C, WEI J Y, WANG F Y. Study on the leaching of lithium from lithium-poor clay-type ore using tartaric acid by calcination and water leaching[J]. Hydrometallurgy, 2024,227106335. doi: 10.1016/j.hydromet.2024.106335

    23. [23]

      ZHENG Y, SONG W, MO W T, ZHOU L, LIU J W. Lithium fluoride recovery from cathode material of spent lithium-ion battery[J]. RSC Adv., 2018,8(16):8990-8998. doi: 10.1039/C8RA00061A

    24. [24]

      GAO W F, ZHANG X H, ZHENG X H, LIN X, CAO H B, ZHANG Y, SUN Z. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process[J]. Environ. Sci. Technol., 2017,51(3):1662-1669. doi: 10.1021/acs.est.6b03320

    25. [25]

      LI L, BIAN Y F, ZHANG X X, GUAN Y B, FAN E S, WU F, CHEN R J. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Manage., 2018,71:362-371. doi: 10.1016/j.wasman.2017.10.028

    26. [26]

      NING P C, MENG Q, DONG P, DUAN J G, XU M L, LIN Y, ZHANG Y J. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system[J]. Waste Manage., 2020,103:52-60.

    27. [27]

      REFLY S, FLOWERI O, MAYANGSARI T R, SUMBOJA A, SANTOSA S P, OGI T, ISKANDAR F. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes[J]. ACS Sustain. Chem. Eng., 2020,8(43):16104-16114.

    28. [28]

      QIN Z Y, WEN Z X, XU Y F, ZHENG Z C, BAI M L, ZHANG N, JIA C K, WU H B, CHEN G. A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode[J]. Small, 2022,18(43)2106719.

    29. [29]

      JUNG S K, GWON H, HONG J, PARK K Y, SEO D H, KIM H, HYUN J, YANG W, KANG K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014,4(1)1300787.

    30. [30]

      JIANG G H, ZHANG Y N, MENG Q, ZHANG Y J, DONG P, ZHANG M Y, YANG X. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method[J]. ACS Sustain. Chem. Eng., 2020,8(49):18138-18147.

    31. [31]

      HE L P, SUN S Y, YU J G. Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method[J]. Ceram. Int., 2018,44(1):351-357.

    32. [32]

      CHEN Z, WANG J, CHAO D L, BAIKIE T, BAI L Y, CHEN S, ZHAO Y L, SUM T C, LIN J Y, SHEN Z X. Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance[J]. Sci. Rep., 2016,6(1)25771.

    33. [33]

      GAO H P, YAN Q Z, TRAN D, YU X L, LIU H D, LI M Q, LI W K, WU J L, TANG W, GUPTA V, LUO J, CHEN Z. Upcycling of spent LiNi0.33Co0.33Mn0.33O2 to single-crystal Ni-rich cathodes using lean precursors[J]. ACS Energy Lett., 2023,8(10):4136-4144.

    34. [34]

      HUANG C, XIA X, CHI Z W, YANG Z H, HUANG H J, CHEN Z X, TANG W J, WU G Q, CHEN H Y, ZHANG W X. Preparation of single-crystal ternary cathode materials via recycling spent cathodes for high performance lithium-ion batteries[J]. Nanoscale, 2022,14(27):9724-9735.

    35. [35]

      WANG J, LI D Q, ZENG W H, CHEN X Y, ZHANG Y X, ZHANG S J, LI Z P, LI C H, MU S C. Degradation mechanism, direct regeneration and upcycling of ternary cathode material for retired lithium-ion power batteries[J]. J. Energy Chem., 2025,102:534-554.

    36. [36]

      QI C, WANG S H, ZHU X K, ZHANG T, GOU Y J, XIE Z X, JIN Y C, WANG Y, SONG L, ZHANG M D. Environmental-friendly low-cost direct regeneration of cathode material from spent LiFePO4[J]. J. Alloy. Compd., 2022,924166612.

    37. [37]

      ZHENG R J, WANG W H, DAI Y K, MA Q X, LIU Y L, MU D Y, LI R H, REN J, DAI C S. A closed-loop process for recycling LiNixCoyMn(1-x-y)O2 from mixed cathode materials of lithium-ion batteries[J]. Green Energy Environ., 2017,2(1):42-49.

  • 加载中
    1. [1]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    5. [5]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    6. [6]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    9. [9]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    10. [10]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    11. [11]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    12. [12]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    13. [13]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    14. [14]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    15. [15]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    16. [16]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    17. [17]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    18. [18]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    19. [19]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    20. [20]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

Metrics
  • PDF Downloads(0)
  • Abstract views(32)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return