Citation: Fangfang WANG, Jiaqi CHEN, Weiyin SUN. CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350 shu

CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH

  • Corresponding author: Weiyin SUN, sunwy@nju.edu.cn
  • Received Date: 25 September 2024
    Revised Date: 15 November 2024

Figures(5)

  • Two kinds of CuBi double perovskite modified Cu-metal-organic framework (CuBi@Cu-MOF) were prepared using a simple stirring method. The product selectivity and Faraday efficiency (FE) of the two composite materials as electrocatalysts for CO2 reduction were systematically evaluated in an alkaline system. The results demonstrated that CuBi@Cu-MOFs exhibited significantly enhanced HCOOH selectivity, the maximum FE of CuBi-MOF reached 56% which was better than the FE of Cu MOF catalyst itself (15%). The surface modification reduces the charge transfer resistance and increases the active sites, thus improving the electrocatalytic performance.
  • 加载中
    1. [1]

      LI W Z, YIN Z L, GAO Z Y, WANG G W, LI Z, WEI F Y, WEI X, PENG H Q, HU X T, XIAO L, LU J, ZHUANG L. Bifunctional ionomers for efficient co-electrolysis of CO2 and pure water towards ethylene production at industrial scale current densities[J]. Nat. Energy, 2022,7(9):835-843. doi: 10.1038/s41560-022-01092-9

    2. [2]

      LIU G B, LI Z H, SHI J J, SUN K, JI Y J, WANG Z G, QIU Y F, LIU Y Y, WANG Z J, HU P A. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential[J]. Appl. Catal. B-Environ., 2020,260118134. doi: 10.1016/j.apcatb.2019.118134

    3. [3]

      LIU M, PANG Y J, ZHANG B, DE LUNA P, VOZNYY O, XU J X, ZHENG X L, DINH C T, FAN F J, CAO C H, DE ARQUER F P G, SAFAEI T S, MEPHAM A, KLINKOVA A, KUMACHEVA E, FILLETER T, SINTON D, KELLEY S O, SARGENT E H. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016,537(7620):382-386. doi: 10.1038/nature19060

    4. [4]

      XIN H, LIN L, LI R T, LI D, SONG T Y, MU R T, FU Q, BAO X H. Overturning CO2 Hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions[J]. J. Am. Chem. Soc., 2022,144(11):4874-4882. doi: 10.1021/jacs.1c12603

    5. [5]

      WANG Z H, LI Y C, ZHAO X, CHEN S Q, NIAN Q S, LUO X, FAN J J, RUAN D G, XIONG B Q, REN X D. Localized alkaline environment via in situ electrostatic confinement for enhanced CO 2-to-ethylene conversion in neutral medium[J]. J. Am. Chem. Soc., 2023,145(11):6339-6348. doi: 10.1021/jacs.2c13384

    6. [6]

      NGUYEN N T, XIA M K, DUCHESNE P N, WANG L, MAO C L, ALI F M, YAN T J, LI P C, LU Z H, OZIN G A. Enhanced CO2 photocatalysis by indium oxide hydroxide supported on TiN@TiO2 nanotubes[J]. Nano Lett., 2021,21(3):1311-1319. doi: 10.1021/acs.nanolett.0c04008

    7. [7]

      KIBRIA M G, EDWARDS J P, GABARDO C M, DINH C T, SEIFITOKALDANI A, SINTON D, SARGENT E H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design[J]. Adv. Mater., 2019,311807166. doi: 10.1002/adma.201807166

    8. [8]

      VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nat. Energy, 2019,4(6):466-474. doi: 10.1038/s41560-019-0374-6

    9. [9]

      LIN S, DIERCKS C S, ZHANG Y B, KORNIENKO N, NICHOLS E M, ZHAO Y B, PARIS A R, KIM D, YANG P, YAGHI O M, CHANG C J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349(6253):1208-1213. doi: 10.1126/science.aac8343

    10. [10]

      ZHENG T T, LIU C X, GUO C X, ZHANG M L, LI X, JIANG Q, XUE W Q, LI H L, LI A, PAO C W, XIAO J P, XIA C, ZENG J. Copper-catalysed exclusive CO2 to pure formic acid conversion via singleatom alloying[J]. Nat. Nanotechnol., 2021,16(12):1386-1393. doi: 10.1038/s41565-021-00974-5

    11. [11]

      HU Q, HAN Z, WANG X D, LI G, WANG Z Y, HUANG X W, YANG H P, REN X Z, ZHANG Q L, LIU J H, HE C X. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane[J]. Angew. Chem.-Int. Edit., 2020,59(43):19054-19059. doi: 10.1002/anie.202009277

    12. [12]

      DUANMU J W, WU Z Z, GAO F Y, YANG P P, NIU Z Z, ZHANG Y C, CHI L P, GAO M R. Investigation and mitigation of carbon deposition over copper catalyst during electrochemical CO2 reduction[J]. Precis. Chem., 2024,2(4):151-160. doi: 10.1021/prechem.4c00002

    13. [13]

      WANG Y N, YANG F, XU H M, JANG J, DELMO E P, QIU X, YING Z H, GAO P, ZHU S Q, GU M D, SHAO M H. The role of phase mixing degree in promoting C-C Coupling in electrochemical CO 2 reduction reaction on Cu-based catalysts[J]. Angew. Chem.-Int. Edit., 2024,63e202400952. doi: 10.1002/anie.202400952

    14. [14]

      YANG X Z, DING H W, LI S N, ZHENG S S, LI J F, PAN F. Cationinduced interfacial hydrophobic microenvironment promotes the C-C coupling in electrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2024,146(8):5532-5542. doi: 10.1021/jacs.3c13602

    15. [15]

      ZHOU D D, ZHANG X W, MO Z W, XU Y Z, TIAN X Y, LI Y, CHEN X M, ZHANG J P. Adsorptive separation of carbon dioxide: From conventional porous materials to metal-organic frameworks[J]. EnergyChem, 2019,1100016. doi: 10.1016/j.enchem.2019.100016

    16. [16]

      CAO C S, MA D D, GU J F, XIE X Y, ZENG G, LI X F, HAN S G, ZHU Q L, WU X T, XU Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angew. Chem.-Int. Edit., 2020,59(35):15014-15020. doi: 10.1002/anie.202005577

    17. [17]

      CUI Y J, YUE Y F, QIAN G D, CHEN B L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2011,112(2):1126-1162.

    18. [18]

      YOON M, SUH K, NATARAJAN S, KIM K. Proton conduction in metal-organic frameworks and related modularly built porous solids[J]. Angew. Chem.-Int. Edit., 2013,52(10):2688-2700. doi: 10.1002/anie.201206410

    19. [19]

      KRENO L E, LEONG K, FARHA O K, ALLENDORF M, VAN DUYNE R P, HUPP J T. Metal organic framework materials as chemical sensors[J]. Chem. Rev., 2011,112(2):1105-1125.

    20. [20]

      LIU D D, MA H R, ZHU C, QIU F Y, YU W B, MA L L, WEI X W, HAN Y F, YUAN G Z. Molecular co catalyst confined within a metallacage for enhanced photocatalytic CO2 reduction[J]. J. Am. Chem. Soc., 2024,146(3):2275-2285. doi: 10.1021/jacs.3c14254

    21. [21]

      CHEN T T, WANG F F, CAO S, BAI Y, ZHENG S S, LI W, ZHANG S T, HU S X, PANG H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Adv. Mater., 2022,34(30)2201779. doi: 10.1002/adma.202201779

    22. [22]

      LIU C L, BAI Y, LI W T, YANG F Y, ZHANG G X, PANG H. In situ growth of three dimensional MXene/metal organic framework composites for high-performance supercapacitors[J]. Angew. Chem.-Int. Edit., 2022,61(11)e202116282. doi: 10.1002/anie.202116282

    23. [23]

      ZHENG S S, SUN Y, XUE H G, BRAUNSTEIN P, HUANG W, PANG H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. Natl. Sci. Rev., 2022,9(7)nwab197. doi: 10.1093/nsr/nwab197

    24. [24]

      SUN Y Y, JI H Q, SUN Y J, ZHANG G X, ZHOU H J, CAO S, LIU S X, ZHANG L, LI W, ZHU X W, PANG H. Synergistic effect of oxygen vacancy and high porosity of nano MIL 125(Ti) for enhanced photocatalytic nitrogen fixation[J]. Angew. Chem.-Int. Edit., 2024,6(3)e202316973.

    25. [25]

      LI X F, ZHU Q L. MOF-based materials for photoand electrocatalytic CO2 reduction[J]. EnergyChem, 2020,2100033. doi: 10.1016/j.enchem.2020.100033

    26. [26]

      PENG H J, TANG M T, HALLDIN STENLID J, LIU X Y, ABILD-PEDERSEN F. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO2 reduction to C2 products[J]. Nat. Commun., 2022,13(1)1399. doi: 10.1038/s41467-022-29140-8

    27. [27]

      CLARK E L, WONG J, GARZA A J, LIN Z, HEAD-GORDON M, BELL A T. Explaining the incorporation of oxygen derived from solvent water into the oxygenated products of CO reduction over Cu[J]. J. Am. Chem. Soc., 2019,141(10):4191-4193. doi: 10.1021/jacs.8b13201

    28. [28]

      HWANG J, RAO R R, GIORDANO L, KATAYAMA Y, YU Y, SHAO-HORN Y. Perovskites in catalysis and electrocatalysis[J]. Science, 2017,358(6364):751-756. doi: 10.1126/science.aam7092

    29. [29]

      ZHOU H, KOUHNAVARD M, JUNG S, MISHRA R, BISWAS P. One-step aerosol synthesis of a double perovskite oxide (KBaTeBiO6) as a potential catalyst for CO2 photoreduction[J]. Nanoscale, 2021,13(27):11963-11975. doi: 10.1039/D1NR01505B

    30. [30]

      ZHU J J, LI H L, ZHONG L Y, XIAO P, XU X L, YANG X G, ZHAO Z, LI J L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catal., 2014,4(9):2917-2940. doi: 10.1021/cs500606g

    31. [31]

      LIU Q Y, ZHU Y M, HE Z Y, JIN S G, CHEN Y. A facile top-down approach for constructing perovskite oxide nanostructure with abundant oxygen defects as highly efficient water oxidation electrocatalyst[J]. Int. J. Hydrog. Energy, 2020,45(43):22808-22816. doi: 10.1016/j.ijhydene.2020.06.137

    32. [32]

      JIN C, CAO X C, ZHANG L Y, ZHANG C, YANG R Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. J. Power Sources, 2013,241:225-230. doi: 10.1016/j.jpowsour.2013.04.116

    33. [33]

      ZHANG H Y, XU Y, LU M, XIE X J, HUANG L. Perovskite oxides for cathodic electrocatalysis of energy-related gases: From O2 to CO2 and N 2[J]. Adv. Funct. Mater., 2021,312101872. doi: 10.1002/adfm.202101872

    34. [34]

      WANG F F, SUN W Y. Cu MOF and CuBi double-perovskite composites for selective CO2 electroreduction to HCOOH[J]. ACS Sustain. Chem. Eng., 2024,12:15651-15658. doi: 10.1021/acssuschemeng.4c06093

    35. [35]

      HE H Y, DAI F N, XIE A P, TONG X, SUN D F. Three novel 3D metal-organic frameworks with a 1D ladder, tube or chain as assembly units[J]. CrystEngComm, 2008,10(10):1429-1435. doi: 10.1039/b808373h

    36. [36]

      WEN C F, ZHOU M, LIU P F, LIU Y W, WU X F, MAO F X, DAI S, XU B B, WANG X L, JIANG Z, HU P, YANG S, WANG H F, YANG H G. Highly ethylene selective electrocatalytic CO2 reduction enabled by isolated Cu S Motifs in metal organic framework based precatalysts[J]. Angew. Chem.-Int. Edit., 2021,61e202111700.

    37. [37]

      CHEN Y R. Study on preparation of copper-bismuth bimetallic catalysts and their electrocatalytic performance on CO2 reduction[D]. Beijing: Beijing University of Chemical Technology, 2022.

    38. [38]

      LOU W S, PENG L W, HE R N, LIU Y Y, QIAO J L. CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO2-toformate conversion[J]. J. Colloid Interface Sci., 2022,606:994-1003. doi: 10.1016/j.jcis.2021.08.080

    39. [39]

      ZHANG Z R, LIU W H, ZHANG W, LIU M M, HUO S J. Interface interaction in CuBi catalysts with tunable product selectivity for electrochemical CO 2 reduction reaction[J]. Colloids Surf. A, 2021,631127637. doi: 10.1016/j.colsurfa.2021.127637

    40. [40]

      YANG S Y, WANG H Z, XIONG Y, ZHU M F, SUN J J, JIANG M H, ZHANG P B, WEI J, XING Y Z, TIE Z X, JIN Z. Ultrafast thermal shock synthesis and porosity engineering of 3D hierarchical Cu-Bi nanofoam electrodes for highly selective electrochemical CO2 reduction[J]. Nano Lett., 2023,23(22):10140-10147. doi: 10.1021/acs.nanolett.3c02380

    41. [41]

      KANG J X, CHEN X Y, SI R T, GAO X, ZHANG S, TEOBALDI G, SELLONI A, LIU L M, GUO L. Activating Bi p-orbitals in dispersed clusters of amorphous BiOx for electrocatalytic nitrogen reduction[J]. Angew. Chem.-Int. Edit., 2023,62e202217428. doi: 10.1002/anie.202217428

    42. [42]

      XIA S, WU F X, LIU Q X, GAO W P, GUO C P, WEI H L, HUSSAIN A, ZHANG Y, XU G B, NIU W X. Steering the selective production of glycolic acid by electrocatalytic oxidation of ethylene glycol with nanoengineered PdBi-based heterodimers[J]. Small, 2024,20(34)2400939. doi: 10.1002/smll.202400939

    43. [43]

      LIU K, MA M, WU L F, VALENTI M, CARDENAS-MORCOSO D, HOFMANN J P, BISQUERT J, GIMENEZ S, SMITH W A. Electronic effects determine the selectivity of planar Au-Cu bimetallic thin films for electrochemical CO 2 reduction[J]. ACS Appl. Mater. Interfaces, 2019,11(18):16546-16555. doi: 10.1021/acsami.9b01553

  • 加载中
    1. [1]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    2. [2]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    3. [3]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    6. [6]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    12. [12]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    13. [13]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    20. [20]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

Metrics
  • PDF Downloads(22)
  • Abstract views(1476)
  • HTML views(374)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return