Citation: Zhangyong LIU, Lihui XU, Yue YANG, Liming WANG, Hong PAN, Xinzhe HUANG, Xueqiang FU, Yingxiu ZHANG, Meiran DOU, Meng WANG, Yi TENG. Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345 shu

Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response

  • Corresponding author: Lihui XU, xulh0915@163.com
  • Received Date: 24 September 2024
    Revised Date: 27 May 2025

Figures(18)

  • CsxWO3/TiO2 composites with full‐spectrum catalytic activity were prepared by solvothermal reaction. The composites were characterized using X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area testing, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis diffuse reflectance spectra (UV‐Vis DRS). CsxWO3 and TiO2 were uniformly bonded together in the composites. The heterojunction structure was formed. The band gap was reduced from 2.75 to 2.65 eV. The photocatalytic property of CsxWO3/TiO2 was demonstrated by the degradation rates of 20 mg·L-1 methylene blue dye, which were 99.7%, 91.4%, and 70.7% under irradiation from a 300 W high‐pressure mercury lamp, a 500 W xenon lamp, and a 400 W infrared lamp, respectively. After five cycles of photocatalytic degradation, the composite photocatalyst still showed a degradation efficiency of 87.6%. This indicates that CsxWO3/TiO2 has good photocatalytic degradability and cyclic stability. The photocatalytic mechanism of CsxWO3/TiO2 was investigated. The trapping experiments of the active species showed that the main active substances were the empty hole (h+) and hydroxyl radical (·OH).
  • 加载中
    1. [1]

      WU Z, ZHU Z Q, MA J P, ZHOU M, WU Z S, YOU H L, ZHANG H F, LI N J, WANG F. High piezo‐photocatalysis of BaTiO3 nanofibers for organic dye decomposition[J]. Surf. Interfaces, 2024,48104308. doi: 10.1016/j.surfin.2024.104308

    2. [2]

      FATIMA R, AFRIDI M N, KUMAR V, LEE J, ALI I, KIM K H, KIM J O. Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems[J]. J. Clean Prod., 2019,231:899-912. doi: 10.1016/j.jclepro.2019.05.292

    3. [3]

      MAYER B K, DAUGHERTY E, ABBASZADEGAN M. Disinfection byproduct formation resulting from settled filtered and finished water treated by titanium dioxide photocatalysis[J]. Chemosphere, 2014,117:72-78. doi: 10.1016/j.chemosphere.2014.05.073

    4. [4]

      ZHAO L, CHEN X F, WANG X C, ZHANG Y J, WEI W, SUN Y H, ANTONIETTI M, TITIRICI M M. One‐step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible‐light photocatalysis[J]. Adv. Mater., 2010,22(30):3317-3321. doi: 10.1002/adma.201000660

    5. [5]

      SMAZNA D, SHREE S, POLONSKYI O, LAMAKA S, BAUM M, ZHELUDKEVICH M, FAUPEL F, ADELUNG R, MISHRA Y K. Mutual interplay of ZnO micro‐and nanowires and methylene blue during cyclic photocatalysis process[J]. J. Environ. Chem. Eng., 2019,7(2)103016. doi: 10.1016/j.jece.2019.103016

    6. [6]

      PENFOLD T, SZLACHETKO J, GAWELDA W, SANTOMAURO F, BRITZ A, VAN DRIEL T, SALA L, EBNER S, SOUTHWORTH S, DOUMY G, MARCH A M, LEHMANN S, KATAYAMA T, MUCKE M, IABLONSKYI D, KUMAGAI Y, KNOPP G, MOTOMURA K, TOGASHI T, OWADA S, YABASHI M, RITTMANN J, NIELSEN M, PAJEK M, UEDA K, CHERGUI M, ABELA R, MILNE C J. Revealing hole trapping in zinc oxide nanoparticles by time‐resolved X‐ray spectroscopy[J]. Abstr. Pap. Am. Chem. Soc., 2018,9478.

    7. [7]

      SUN L, YANG M J, HUANG J F, YU D S, HONG W, CHEN X D. Freestanding graphitic carbon nitride photonic crystals for enhanced photocatalysis[J]. Adv. Funct. Mater., 2016,26(27):4943-4950. doi: 10.1002/adfm.201600894

    8. [8]

      SUN L, HONG W, LIU J, YANG M J, LIN W S, CHEN G J, YU D S, CHEN X D. Cross‐linked graphitic carbon nitride with photonic crystal structure for efficient visible‐light‐driven photocatalysis[J]. ACS Appl. Mater. Interfaces, 2017,9(51):44503-44511. doi: 10.1021/acsami.7b14359

    9. [9]

      LINGHU X, SHU Y, LIU L A, ZHAO Y, ZHANG J W, CHEN Z, SHAN D, WANG B Q. Hydro/solvothermally synthesized bismuth tungstate nanocatalysts for enhanced photocatalytic degradation of dyes, antibiotics, and bacteria in wastewater: A review[J]. J. Water Process. Eng., 2023,54103994. doi: 10.1016/j.jwpe.2023.103994

    10. [10]

      ORIMOLADE B O, IDRIS A O, FELENI U, MAMBA B. Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis‒A comprehensive review[J]. Environ. Pollut., 2021,289117891. doi: 10.1016/j.envpol.2021.117891

    11. [11]

      WANG F F, WANG H J, LIU X Y, WU D P, JIANG K, LI Q, XU D S. Full‐spectrum liquid‐junction quantum dot‐sensitized solar cells by integrating surface plasmon‐enhanced electrocatalysis[J]. Adv. Energy Mater., 2018,8(20)1800136. doi: 10.1002/aenm.201800136

    12. [12]

      WANG S L, ZHU Y, LUO X, HUANG Y, CHAI J W, WONG T I, XU G Q. 2D WC/WO3 heterogeneous hybrid for photocatalytic decomposition of organic compounds with Vis‐NIR light[J]. Adv. Funct. Mater., 2018,28(11)1705357. doi: 10.1002/adfm.201705357

    13. [13]

      HUANG M Z, YUAN B L, DAI L Y, FU M L. Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β‐NaYF4: Yb3+, Tm3+/g‐C3N4 nanocomposite[J]. J. Colloid Interface Sci., 2015,460:264-272. doi: 10.1016/j.jcis.2015.08.063

    14. [14]

      ELBANNA O, ZHU M S, FUJITSUKA M, MAJIMA T. Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near‐infrared light irradiation[J]. ACS Catal., 2019,9(4):3618-3626. doi: 10.1021/acscatal.8b05081

    15. [15]

      SHI X, WANG P Q, WANG L, BAI Y, XIE H Q, ZHOU Y, WANG J A, LI Z J, QU L B, SHI M J, YE L Q. Few layered BiOBr with expanded interlayer spacing and oxygen vacancies for efficient decomposition of real oil field produced wastewater[J]. ACS Sustain. Chem. Eng., 2018,6(11):13739-13746. doi: 10.1021/acssuschemeng.8b01622

    16. [16]

      TERAMURA K, IGUCHI S, MIZUNO Y, SHISHIDO T, TANAKA T. Photocatalytic conversion of CO2 in water over layered double hydroxides[J]. Angew. Chem.‒Int. Edit., 2012,51(32):8008-8011. doi: 10.1002/anie.201201847

    17. [17]

      PRABHU P, JOSE V, LEE J M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction[J]. Adv. Funct. Mater., 2020,30(24)1910768. doi: 10.1002/adfm.201910768

    18. [18]

      LU Y F, HUANG Y, ZHANG Y F, HUANG T T, LI H W, CAO J J, HO W K. Effects of H2O2 generation over visible light‐responsive Bi/Bi2O2xCO3 nanosheets on their photocatalytic NOx removal performance[J]. Chem. Eng. J., 2019,363:374-382. doi: 10.1016/j.cej.2019.01.172

    19. [19]

      LASEK J, YU Y H, WU J C S. Removal of NOx by photocatalytic processes[J]. J. Photochem. Photobiol. C‒Photochem. Rev., 2013,14:29-52. doi: 10.1016/j.jphotochemrev.2012.08.002

    20. [20]

      WU X Y, YIN S, XUE D F, KOMARNENI S, SATO T. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation[J]. Nanoscale, 2015,7(40):17048-17054. doi: 10.1039/C5NR04452A

    21. [21]

      YUAN B H, ZHANG C F, LIANG Y, YANG L X, YANG H W, BAI L J, WEI D L, WANG W X, WANG Q Y, CHEN H. Defect‐induced self‐cleaning solar absorber with full‐spectrum light absorption for efficient dye wastewater purification[J]. Sol. RRL, 2021,5(5)2100105. doi: 10.1002/solr.202100105

    22. [22]

      LI N, GAO X Y, FAN H K, GAO Y Q, GE L. Insight into the relationship of the high photocatalytic performance and double photochromic activity of Z‐scheme CsxWO3/AgBr heterostructures under UV‐Vis‐NIR light utilization[J]. Appl. Surf. Sci., 2020,529147038. doi: 10.1016/j.apsusc.2020.147038

    23. [23]

      CAO X, CHEN Z, LIN R, CHEONG W C, LIU S J, ZHANG J, PENG Q, CHEN C, HAN T, TONG X J, WANG Y, SHEN R G, ZHU W, WANG D S, LI Y D. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C—H bonds in toluene[J]. Nat. Catal., 2018,1(9):704-710. doi: 10.1038/s41929-018-0128-z

    24. [24]

      LI Y, WU X Y, LI J, WANG K, ZHANG G K. Z‐scheme g‐C3N4@ CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs[J]. Appl. Catal. B‒Environ., 2018,229:218-226. doi: 10.1016/j.apcatb.2018.02.024

    25. [25]

      LI T C, LIU J X, SHI F, SONG X Y, ZHANG H Y, ZHANG H J, MA C C, ZHU K Y, LIU J Y. Construction of a novel highly porous BiOBr/CsxWO3@SiO2 composite aerogel: Adsorption/self‐heating photocatalytic synergistic degradation of antibiotics and mechanism study[J]. J. Environ. Chem. Eng., 2022,10(3)107785. doi: 10.1016/j.jece.2022.107785

    26. [26]

      YE N F, WANG J J, YAN X H, SHA D W, CHEN M, ZHOU C, WANG D F, YUAN X X, CHENG X N, ZU J X. Novel CsxWO3/TiO2 microspheres as enhanced visible light photocatalysts for dye pollutant treatments[J]. J. Nanosci. Nanotechnol., 2018,18(8):5485-5492. doi: 10.1166/jnn.2018.15438

    27. [27]

      HUANG X, DU R, REN J Y, LI X, FU M X, FU S J, MA T X, GUO L, SOOMRO R A, YANG C M, WANG D J. Unveiling the mechanism of aerobic photocatalytic nitrogen fixation over dynamic structural renovation on Bi2MO6 (M=Mo, W)[J]. ACS Catal., 2024,14(18):13542-13549. doi: 10.1021/acscatal.4c03183

    28. [28]

      MAN H L, WANG C, SUN Y, NING Y P, SONG P, HUANG W S. Studies on CsxWO3/BiOCl composite as a novel visible light droven photocatalyst[J]. J. Materiomics, 2016,2(4):338-343. doi: 10.1016/j.jmat.2016.10.002

    29. [29]

      XING M Y, FANG W Z, NASIR M, MA Y F, ZHANG J L, ANPO M. Self‐doped Ti3+‐enhanced TiO2 nanoparticles with a high‐performance photocatalysis[J]. J. Catal., 2013,297:236-243. doi: 10.1016/j.jcat.2012.10.014

    30. [30]

      SHI F, LIU J X, DONG X L, XU Q, LUO J Y, MA H C. Hydrothermal synthesis of CsxWO3 and the effects of N2 annealing on its microstructure and heat shielding properties[J]. J. Mater. Sci. Technol., 2014,30(4):342-346. doi: 10.1016/j.jmst.2013.08.018

    31. [31]

      MA T X, LI R Q, HUANG Y C, LU Y X, GUO L, NIU M M, HUANG X, SOOMRO R A, REN J Y, WANG Q, XU B, YANG C M, FU F, WANG D J. Interfacial chemical‐bonded MoS2/In‐Bi2MoO6 heterostructure for enhanced photocatalytic nitrogen‐to‐ammonia conversion[J]. ACS Catal., 2024,14(8):6292-6304. doi: 10.1021/acscatal.3c05416

    32. [32]

      LI R Q, BIAN Y J, YANG C M, GUO L, MA T X, WANG C T, FU F, WANG D J. Electronic structure regulation and built‐in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti‐BiOBr/TiO2 heterostructure[J]. Rare Metals, 2024,43(3):1125-1138. doi: 10.1007/s12598-023-02471-1

  • 加载中
    1. [1]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    6. [6]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    7. [7]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    8. [8]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    9. [9]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    10. [10]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    11. [11]

      Kunya WangBingyu LiuDaojiang YanJian BaiHaibo YuYoucai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811

    12. [12]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    13. [13]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    14. [14]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    15. [15]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    18. [18]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    19. [19]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return