Citation: Jia JI, Zhaoyang GUO, Wenni LEI, Jiawei ZHENG, Haorong QIN, Jiahong YAN, Yinling HOU, Xiaoyan XIN, Wenmin WANG. Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344 shu

Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity

Figures(9)

  • Two new binuclear Gd2 complexes with the molecular formula [Gd2(L)(H2L)]·2CH3OH·CH3CN (1) and [Gd2(H2L)2(dbm)2]·6CH3CN (2) (Hdbm=dibenzoylmethane) have been obtained by using a large conjugated diacylhydrazone organic ligand N′, N‴-(1E, 1′E)-(1, 10-phenanthroline-2, 9-diyl)bis(methaneylylidene) bis (2-hydroxy-benzohydrazide) (H4L) reacting with Gd(NO3)3·6H2O or Gd(dbm)3·2H2O. Structure studies reveal that Gd2 complexes 1 and 2 belong to a triclinic crystal system with space group P1. Nevertheless, they show different molecule structures. 1 displays a cattail leaf fan shape, while 2 displays a pinwheel-shaped cage. Magnetic properties researches suggest that the two Gd2 complexes displayed different magnetic refrigeration (-ΔSm=23.35 and 15.09 J·kg-1·K-1 for 1 and 2, respectively). In addition, the synergistic interaction between ligand and Ln(Ⅲ) ions, promotes the two Gd2 complexes showing excellent antibacterial activity. When the Gd2 complexes interact with DNA, the Gd2 complexes mainly insert or cut DNA.
  • 加载中
    1. [1]

      WANG W M, ZHANG T T, WANG D, CUI J Z. Structures and magnetic properties of novel Ln(Ⅲ)-based pentanuclear clusters: Magnetic refrigeration and single-molecule magnet behavior[J]. New J. Chem., 2020,44:19351-19359.  

    2. [2]

      PENG J B, ZHANG Q C, KONG X J, ZHENG Y Z, REN Y P, LONG L S, HUANG R B, ZHENG L S, ZHENG Z P. High-nuclearity 3d-4f compounds as enhanced magnetic coolers and molecular magnets[J]. J. Am. Chem. Soc., 2012,134:3314-3317.  

    3. [3]

      WANG W M, WU Z L, CUI J Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: Disparate magnetocaloric effects and single-molecule magnet behaviours[J]. Dalton Trans., 2021,50:12931-12943.  

    4. [4]

      WANG W M, WANG M J, HAO S S, SHEN Q Y, WANG M L, LIU Q L, GUAN X F, ZHANG X T, WU Z L. 'Windmill'-shaped Ln4 (Ln=Gd and Dy) clusters: Magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2020,44:4631-4638.

    5. [5]

      WANG W M, HE L Y, WANG X X, SHI Y, WU Z L, CUI J Z. Linear-shaped Ln4 and Ln6 clusters constructed by a polydentate Schiff base ligand and a β-diketone co-ligand: Structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior[J]. Dalton Trans., 2019,48:16744-16755. doi: 10.1039/C9DT03478A

    6. [6]

      WANG W M, WANG S Y, ZHANG H X, SHEN H Y, ZOU J Y, GAO H L, CUI J Z, ZHAO B. Modulating single-molecule magnet behaviour of phenoxo-O bridged lanthanide(Ⅲ) dinuclear complexes by using different β-diketonate coligands[J]. Inorg. Chem. Front., 2016,3:133-141.

    7. [7]

      WANG W M, KANG X M, SHEN H Y, WU Z L, GAO H L, CUI J Z. Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters[J]. Inorg. Chem. Front., 2018,5:1876-1885. doi: 10.1039/C8QI00214B

    8. [8]

      LI L L, CHEN S S, LIU S, YONG Z. H, ZHANG D K, ZHANG S S, XIN Y C. Lanthanide metal-organic frameworks containing ferromagnetically coupled metal-carboxylate chains showing slow magnetic relaxation behavior[J]. J. Mol. Struct., 2022,1276134777.

    9. [9]

      LI L L, SU H D, LIU S, XU Y C, WANG W Z. A new air- and moisture-stable pentagonal-bipyramidal Dy single-ion magnet based on the HMPA ligand[J]. Dalton Trans., 2019,48:2213-2219. doi: 10.1039/C8DT03565B

    10. [10]

      LI L L, FANG Y F, LIU S, HU M F, WANG W Z. Slow magnetic relaxation in a 3D dysprosium(Ⅲ)-fluoro-oxalate framework containing zig-zag[Dy-F]n chains[J]. J. Rare Earths, 2022,41(1):100-107.

    11. [11]

      LI L L, SU H D, LIU S, WANG W Z. Enhancing the energy barrier by replacing the counterions in two holmium(Ⅲ)-pentagonal bipyramidal single-ion magnets[J]. Dalton Trans., 2020,49:6703-6709. doi: 10.1039/D0DT00905A

    12. [12]

      MAHATA P, MONDAL S K, SINGHA D K, MAJEE P. Luminescent rare-earth-based MOFs as optical sensors[J]. Dalton Trans., 2017,46:301-328. doi: 10.1039/C6DT03419E

    13. [13]

      XU H, CAO C S, KANG X M, ZHAO B. Lanthanide-based metal- organic frameworks as luminescent probes[J]. Dalton. Trans., 2016,45:18003-18017.  

    14. [14]

      QIAO N, XIN X Y, GUAN X F, ZHANG C X, WANG W M. Self- assembly bifunctional tetranuclear Ln2Ni2 clusters: Magnetic behavior and highly efficient converting CO2 under mild conditions[J]. Inorg. Chem., 2022,61:15098-15107. doi: 10.1021/acs.inorgchem.2c02180

    15. [15]

      WANG W M, QIAO N, XIN X Y, YANG C, CHEN Y, DONG S S, ZHANG C X. New wheel-shaped Ln6 clusters for conversion of CO2 and magnetic properties[J]. J. Rare Earths, 2023,41:1574-1582. doi: 10.1016/j.jre.2022.09.012

    16. [16]

      WANG W M, XIN X Y, QIAO N, WU Z L, LI L, ZOU J Y. Self- assembly of octanuclear Ln(Ⅲ)-based clusters: Their large magnetocaloric effects and highly efficient conversion of CO2[J]. Dalton. Trans., 2022,51:13957-13969. doi: 10.1039/D2DT01892F

    17. [17]

      HUANG J, CUI Z N, LI Y, YANG X L. Bioactivities of copper complexes with Schiff bases[J]. Chin. J. Org. Chem., 2008,28598.  

    18. [18]

      FESATIDOU M, PETROU A, ATHINA G. Heterocycle compounds with antimicrobial activity[J]. Curr. Pharm. Des., 2020,26:867-904. doi: 10.2174/1381612826666200206093815

    19. [19]

      KASHYAP A, ADHIKARI N, DAS A, SHAKYA A, GHOSH S K, SINGH U P, BHAT H R. Review on synthetic chemistry and antibacterial importance of thiazole derivatives[J]. Curr. Drug Discov. Technol., 2018,15:214-228. doi: 10.2174/1570163814666170911144036

    20. [20]

      LI B, WEN H M, CUI Y, QIAN G, CHEN B. Multifunctional lanthanide coordination polymers[J]. Prog. Polym. Sci., 2015,48:40-84. doi: 10.1016/j.progpolymsci.2015.04.008

    21. [21]

      ZHENG X Y, KONG X J, ZHENG Z, LONG L S, ZHENG L S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers[J]. Acc. Chem. Res., 2018,51:517-525. doi: 10.1021/acs.accounts.7b00579

    22. [22]

      WANG K, CHEN Z L, ZOU H H, ZHANG S H, LI Y, ZHANG X Q, SUN W Y, LIANG F P. Diacylhydrazone-assembled {Ln11} nanoclusters featuring a "double-boats conformation" topology: Synthesis, structures and magnetism[J]. Dalton Trans., 2018,47:2337-2343. doi: 10.1039/C7DT03179C

    23. [23]

      ZHENG Y Z, ZHOU G J, ZHENG Z P, WINPENNY R E P. Molecule-based magnetic coolers[J]. Chem. Soc. Rev., 2014,43:1462-1475. doi: 10.1039/C3CS60337G

    24. [24]

      ZHOU Y, ZHENG X Y, CAI J, HONG Z F, YAN Z H, KONG X J, REN Y P, LONG L S, ZHENG L S. Three giant lanthanide clusters Ln37 (Ln=Gd, Tb, and Eu) featuring a double-cage structure[J]. Inorg. Chem., 2017,56:2037-2041. doi: 10.1021/acs.inorgchem.6b02714

    25. [25]

      WANG K, CHEN Z L, ZOU H H, HU K, LI H Y, ZHANG Z, SUN W Y, LIANG F P. A single-stranded {Gd18} nano-wheel with a symmetric polydentate diacylhydrazone ligand[J]. Chem. Commun., 2016,52:8297-8300. doi: 10.1039/C6CC02208A

    26. [26]

      CHANG L X, XIONG G, WANG L, CHENG P, ZHAO B. A 24-Gd nanocapsule with a large magnetocaloric effect[J]. Chem. Commun., 2013,49:1055-1057. doi: 10.1039/C2CC35800J

    27. [27]

      LUO X M, HU Z B, LIN Q F, CHENG W W, CAO J P, CUI C H, MEI H, SONG Y, XU Y. Exploring the performance improvement of magnetocaloric effect based Gd-exclusive cluster Gd60[J]. J. Am. Chem. Soc., 2018,140:11219-11222. doi: 10.1021/jacs.8b07841

    28. [28]

      PENG J B, KONG X J, ZHANG Q C, ORENDA M, PROKLESKA J, REN Y P, LONG L S, ZHENG Z P, ZHENG L S. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms[J]. J. Am. Chem. Soc., 2014,136:17938-17941. doi: 10.1021/ja5107749

    29. [29]

      ZHENG X Y, JIANG Y H, ZHUANG G L, LIU D P, LIAO H G, KONG X J, LONG L S, ZHENG L S. A gigantic molecular wheel of {Gd140}: A new member of the molecular wheel family[J]. J. Am. Chem. Soc., 2017,139:18178-18181. doi: 10.1021/jacs.7b11112

    30. [30]

      LI X M, ZHANG Y F, NI J Z, CHEN J W, HUANG F. Effect of lanthanide ions on the phase-behavior of dipalmitoylphosphatidylcholine multilamellar liposomes[J]. J. Inorg. Biochem., 1994,53:139-149. doi: 10.1016/0162-0134(94)85028-3

    31. [31]

      JIANG W H, CHEN D, HAO L M, MENG X T. Effects of LaCl3 on P16 and P21 expressions of hepatocellular carcinoma cells[J]. Journal of Jilin University (Medicine Edition), 2007,33(4):675-677.

    32. [32]

      YANG X P, XU P F, GAO Q X. Synthesis, characterization, and antitumor activity of some trivalent lanthanide complexes with 2-formylphenoxyacetic acid thiosemicarbazone[J]. Synth. React. Inorg. Met.‒Org. Chem., 2002,32:59-68.

    33. [33]

      MA S Z, HE Q Z, YANG Z F, XU D F, SUN D Z. Synthesis and biological activity of rare earth complexes with Schiff base and o-phenanthroline[J]. Chemical Research and Application, 2008,20(9):1138-1142. doi: 10.3969/j.issn.1004-1656.2008.09.010

    34. [34]

      WANG M, LI Y Z, LI Q X, WANG L F. Synthesis, antioxidative activity and antibacterial activity of complexes of rare earth with syn-2-(2'-aminothiazolyl-)-2-methoxyimino acetic acid[J]. Chinese J. Inorg. Chem., 2000,16(5):710-714. doi: 10.3321/j.issn:1001-4861.2000.05.002

    35. [35]

      KATAGIRI S, TSUKAHARA Y, HASEGAWA Y, WADA Y. Energy-transfer mechanism in photoluminescent terbium(Ⅲ) complexes causing their temperature-dependence[J]. Bull. Chem. Soc. Jpn., 2007,80:1492-1503. doi: 10.1246/bcsj.80.1492

    36. [36]

      WANG H L, LIU T, ZHU Z H, PENG J M, ZOU H H, LIANG F P. A series of dysprosium clusters assembled by a substitution effect-driven out-to-in growth mechanism[J]. Inorg. Chem. Front., 2021,8:2136-2143. doi: 10.1039/D1QI00101A

    37. [37]

      ZHONG K L, MA X Q, TONG Y H, HU H, CHEN Y X, LING Y N, CUI M, JIA T, HOU Y L, WANG W M. Two solvent-stable Dy2 compounds constructed by a large conjugated diacylhydrazone ligand: Disparate crystal structures and single-molecule-magnet behaviors[J]. Inorg. Chim. Acta, 2023,557121702. doi: 10.1016/j.ica.2023.121702

    38. [38]

      SPEK A L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Cryst., 2003,36:7-13.

    39. [39]

      CASANOVA D, LLUNELL M, ALEMANY P, ALVAREZ S. The rich stereochemistry of eight-vertex polyhedra: A continuous shape measures study[J]. Chem.‒Eur. J., 2005,11:1479-1494.  

    40. [40]

      WANG W M, QIAO W Z, ZHANG H X, WANG S Y, NIE Y Y, CHEN H M, LIU Z, GAO H L, CUI J Z, ZHAO B. Structures and magnetic properties of several phenoxo-O bridged dinuclear lanthanide complexes: Dy derivatives displaying substituent dependent magnetic relaxation behavior[J]. Dalton Trans., 2016,45:8182-8191.

    41. [41]

      CEN P P, LIU X Y, ZHANG Y Q, FERRANDO-SORIA J, XIE G, CHEN S P, PARDO E. Modulating magnetic dynamics through tailoring the terminal ligands in Dy2 single-molecule magnets[J]. Dalton Trans., 2020,49:808-816.  

    42. [42]

      TANG J M, ZHANG S, LI L Z, YAO L B, ZHANG R H, YIN B, ZHANG J W. Influence of ligand substitution and the solvent effect on the structures and magnetic properties of dinuclear Dy2 supramolecular architectures constructed with the bis-β-diketonate-Dy2 building block as a metalloligand[J]. Dalton Trans., 2023,52:1366-1377.

    43. [43]

      ROY S, SHUKLA P, AHMED N, DU M H, TARANNUM I, KONG X J, GUPTA T, SINGH S K, DAS S. Interplay between anisotropy and magnetic exchange to modulate the magnetic relaxation behaviours of phenoxo bridged Dy2 dimers with axial β-diketonate co-ligands[J]. Dalton Trans., 2022,51:18187-18202.

    44. [44]

      WANG W M, ZHANG H X, WANG S Y, SHEN H Y, GAO H L, CUI J Z, ZHAO B. Ligand field affected single-molecule magnet behavior of lanthanide(Ⅲ) dinuclear complexes with an 8-hydroxyquinoline Schiff base derivative as bridging ligand[J]. Inorg. Chem., 2015,54:10610-10622.  

    45. [45]

      LI Z Y, ZHAI B, LI S Z, CAO G X, ZHANG F Q, ZHANG X F, ZHANG F L, ZHANG C. Two series of lanthanide coordination polymers with 2-methylenesuccinate: Magnetic refrigerant, slow magnetic relaxation, and luminescence properties[J]. Cryst. Growth Des., 2016,16:4574-4581.  

    46. [46]

      SHI Q H, XUE C L, FAN C J, YAN L L, QIAO N, FANG M, WANG S F. Magnetic refrigeration property and slow magnetic relaxation behavior of five dinuclear Ln(Ⅲ)-based compounds[J]. Polyhedron, 2021,194114938.

    47. [47]

      WU D F, LIU Z, REN P, LIU X H, WANG N, CUI J Z, GAO H L. A new family of dinuclear lanthanide complexes constructed from an 8-hydroxyquinoline Schiff base and β-diketone: Magnetic properties and near-infrared luminescence[J]. Dalton Trans., 2019,48:1392-1403.

    48. [48]

      QIAO N, XIN X Y, YANG C, FANG M, ZHANG C X, WANG W M, WU Z L. Two series of tetranuclear Ln(Ⅲ)-based clusters: Structures, magnetic behaviors, and efficient cycloaddition of CO2 to oxazolidinones[J]. Cryst. Growth Des., 2023,23:7159-7168.  

    49. [49]

      YANG F, ZHOU Q, ZENG G, LI G H, LU GAO, SHI Z, FENG S H. Anion effects on the structures and magnetic properties of binuclear lanthanide single-molecule magnets[J]. Dalton Trans., 2014,43:1238-1245.

    50. [50]

      ZHANG J, ZHANG H F, CHEN Y M, ZHANG X F, LI Y H, LIU W, DONG Y P. A series of dinuclear lanthanide complexes with slow magnetic relaxation for Dy2 and Ho2[J]. Dalton Trans., 2016,45:16463-16470.

    51. [51]

      MACHATA M, HERCHEL R, NEMEC I, TRÁVNÍČEK Z. Crystal structures and magnetic properties of two series of phenoxo-O bridged dinuclear Ln2 (Ln=Gd, Tb, Dy) complexes[J]. Dalton Trans., 2017,46:16294-16305.

    52. [52]

      POINTILLART F, CAUCHY T, MAURY O, GAL Y L, GOLHEN S, CADOR O, OUAHAB L. Tetrathiafulvalene-amido-2-pyridine-N- oxide as efficient charge-transfer antenna ligand for the sensitization of Yb luminescence in a series of lanthanide paramagnetic coordination complexes[J]. Chem.‒Eur. J., 2010,16:11926-11941.

    53. [53]

      LU Y B, JIANG X M, ZHU S D, DU Z Y, LIU C M, XIE Y R, LIU L. X. Anion effects on lanthanide(Ⅲ) tetrazole-1-acetate dinuclear complexes showing slow magnetic relaxation and photofluorescent emission[J]. Inorg. Chem., 2016,55:3738-3749.

    54. [54]

      WANG W M, QIAO N, XIN X Y, WU Z L, CUI J Z. Octanuclear Ln(Ⅲ)-based clusters assembled by a polydentate Schiff base ligand and a β-diketone co-ligand: Efficient conversion of CO2 to cyclic carbonates and large magnetocaloric effect[J]. Cryst. Growth Des., 2023,23:87-95.

    55. [55]

      DEBYE P. Some comments on magnetization at low temperature[J]. Ann. Phys., 1926,3861154.

    56. [56]

      WANG W M, CHENG R R, WU Z L, CUI J Z. Bifunctional lanthanide-lased coordination polymers: Conversion of CO2 and highly selective luminescence sensing for acetylacetone[J]. Inorg. Chem., 2023,62:14902-14911.

    57. [57]

      YANG Y, WANG Y X, LEI Y Z, CHENG P. Asymmetric triply bridged lanthanide binuclear clusters with distinctly different magnetic behaviors[J]. Dalton Trans., 2024,53(48):19097-19101.

    58. [58]

      BOERNER L J K, ZALESKI J M. Metal complex-DNA interactions: From transcription inhibition to photoactivated cleavage[J]. Curr. Opin. Chem. Biol., 2005,9:135-144.

    59. [59]

      National Development and Reform Commission of the People's Republic of China. Performance and evaluation of inorganic antibacterial agent: HG/T 3794—2005[S]. Beijing: Standards Press of China, 2005.

    60. [60]

      ZHANG C X, LIPPARD S J. New metal complexes as potential therapeutics[J]. Curr. Opin. Chem. Biol., 2003,7:481-489.

    61. [61]

      BARTON J K. Metals and DNA: Molecular left-handed complements[J]. Science, 1986,233:727-734.

    62. [62]

      LIU H K, SADLER P J. Metal complexes as DNA intercalators[J]. Acc. Chem. Res., 2011,44:349-359.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(0)
  • Abstract views(25)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return