Citation: Pengyang FAN, Shan FAN, Qinjin DAI, Xiaoying ZHENG, Wei DONG, Mengxue WANG, Xiaoxiao HUANG, Yong ZHANG. Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339 shu

Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials

  • Corresponding author: Shan FAN, fanshan@qqhru.edu.cn Yong ZHANG, 
  • Received Date: 19 September 2024
    Revised Date: 25 December 2024

Figures(7)

  • A cathode material rich in 1T-MoS2 (1T′-MoS2) for aqueous zinc ion batteries was successfully synthesized via a one-step hydrothermal method. The characterization results and density functional theory (DFT) simulation calculations indicated that the conductivity of 1T′-MoS2 was significantly higher than that of 2H-MoS2, and 1T′-MoS2 contained abundant sulfur vacancies. That substantially enhances the ion diffusion and charge transfer rates, as well as the electrochemical and kinetic characteristics of the material. Therefore, the initial discharge capacity of the battery assembled with 1T′-MoS2 was as high as 202 mAh·g-1 at a current density of 0.1 A·g-1. In addition, at a high current density (1 A·g-1), the capacity retention rate was 92% after 500 cycles, showing good high capacity and long-cycle stability.
  • 加载中
    1. [1]

      LI Y, DONG X, XU Z, DONG X F, WANG M L, WANG R F, XIE J, DING Y J, SU P C, JIANG C Y, ZHANG X M, WEI L Y, LI J F, CHU Z Q, SUN J Y, HUANG C. Piezoelectric 1T phase MoSe2 nanoflowers and crystallographically textured electrodes for enhanced low-temperature zinc-ion storage[J]. Adv. Mater., 2023,35(6)2208615.

    2. [2]

      XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nat. Commun., 2020,11(1)2499.  

    3. [3]

      EFTEKHARI A. Lithium batteries for electric vehicles: From economy to research strategy[J]. ACS Sustain. Chem. Eng., 2019,7(6):5602-5613.

    4. [4]

      LONG F, ZHANG Q X, SHI J J, WEN L, WU Y H, REN Z Q, LIU Z Y, HOU Y X, MAO K, NIU K, LIU N S, ZHANG Z, LI L Y, SU J, GAO Y H. Ultrastable and ultrafast 3D charge-discharge network of robust chemically coupled 1T-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries[J]. Chem. Eng. J., 2023,455140539.  

    5. [5]

      LIANG Y C, WANG Y Y, MI H W, SUN L N, MA D T, LI H W, HE C H, ZHANG P X. Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries[J]. Chem. Eng. J., 2021,425131862.

    6. [6]

      DENG S Z, TIE Z W, YUE F, GAO H M, YAO M J, NIU Z Q. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries[J]. Angew. Chem.‒Int. Ed., 2022,61(12)e202115877.  

    7. [7]

      SONG Y Y, LI J M, QIAO R, DAI X, JING W T, SONG J X, CHEN Y Z, GUO S W, SUN J J, TAN Q, LIU Y N. Binder-free flexible zinc-ion batteries: One-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode[J]. Chem. Eng. J., 2022,431133387.

    8. [8]

      WANG X, XI B J, MA X J, FENG Z Y, JIA Y X, FENG J K, QIAN Y T, XIONG S L. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate[J]. Nano Lett., 2020,20(4):2899-2906.  

    9. [9]

      LIU S C, HE J F, LIU D S, YE M H, ZHANG Y F, QIN Y L, LI C C. Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density[J]. Energy Storage Mater., 2022,49:93-101.

    10. [10]

      YU P, ZENG Y X, ZHANG H Z, YU M H, TONG Y X, LU X H. Flexible Zn-ion batteries: Recent progresses and challenges[J]. Small, 2019,15(7)1804760.

    11. [11]

      GONG Y Y, WANG Y N, FANG Z M, ZHAO S S, HE Y S, ZHANG W M, MU J L, ZHANG L P, MA Z F. Constructing a catalytic reservoir using cobalt nanoparticles-MoS2@nitrogen doped carbon nanotubes on the separator to immobilize polysulfides and accelerate their conversion for lithium-sulfur batteries[J]. Chem. Eng. J., 2022,446136943.  

    12. [12]

      NIU F, BAI Z C, MAO Y Y, ZHANG S Q, YAN H R, XU X, CHEN J M, WANG N N. Rational design of MWCNTs@amorphous carbon@MoS2: Towards high performance cathode for aqueous zinc-ion batteries[J]. Chem. Eng. J., 2023,453139933.  

    13. [13]

      LIU Q Y, HE J J, XIE J H, ZHANG H Z, WU H B, WANG G Z, LU X H, YANG Z J. Shielding unfavorable interaction by oxygen-mediated interlayer chemical bonding enables high-capacity and stable MoS2 cathode[J]. Nano Energy, 2024,127109780.

    14. [14]

      XU W W, SUN C L, ZHAO K N, CHENG X, RAWAL S, XU Y, WANG Y. Defect engineering activating (boosting) zinc storage capacity of MoS2[J]. Energy Storage Mater., 2019,16:527-534.  

    15. [15]

      LIU J P, XU P T, LIANG J M, LIU H B, PENG W C, LI Y, ZHANG F B, FAN X B. Boosting aqueous zinc-ion storage in MoS2 via controllable phase[J]. Chem. Eng. J., 2020,389124405.  

    16. [16]

      WANG S, ZENG G F, SUN Q, FENG Y, WANG X X, MA X Y, LI J, ZHANG H, WEN J Y, FENG J Y, CI L J, CABOT A, TIAN Y H. Flexible electronic systems via electrohydrodynamic jet printing: A MnSe@rGO cathode for aqueous zinc-ion batteries[J]. ACS Nano, 2023,17(14):13256-13268.  

    17. [17]

      SUN J W, ZHANG Z H, LIAN G, LI Y Y, JING L Y, ZHAO M W, CUI D L, WANG Q L, YU H H, WONG C P. Electron-injection and atomic-interface engineering toward stabilized defected 1T-rich MoS2 as high rate anode for sodium storage[J]. ACS Nano, 2022,16(8):12425-12436.

    18. [18]

      DING S Q, TIAN Y X, CHEN J K, LV H, WANG A, DAI J J, DAI X, WANG L, LI G C, MENG A, LI Z J. Multidimensional defects tailoring local electron and Mg2+ diffusion channels for boosting magnesium storage performance of WO3/MoO2[J]. J. Energy Chem., 2023,84:476-485.  

    19. [19]

      LIU J Y, ZHE R J, PENG Z H, SONG Y H, YANG L X, QING C, GUO J L, LIU J P. Fe doping 1T phase MoS2 with enhanced zinc-ion storage ability and durability for high-performance aqueous zinc-ion batteries[J]. Rare Met., 2024. doi: 10.1007/s12598-024-02963-8

    20. [20]

      YANG W J, MOU L S, XIAO B Q, CHEN J, WANG D, PENG S L, HUANG J J. Mn2+-doped MoS2/MXene heterostructure composites as cathodes for aqueous zinc-ion batteries[J]. ACS Appl. Mater. Interfaces, 2023,15(44):51231-51240.

    21. [21]

      ZHANG J P, XIE Z R, XI W, ZHANG Y F, WANG R, GONG Y S, HE B B, WANG H W, JIN J. 3D printing of tungstate anion modulated 1T-MoS2 composite cathodes for high-performance lithium-sulfur batteries[J]. Adv. Energy Mater., 20242401792.  

    22. [22]

      HE H N, HUANG D, GAN Q M, HAO J N, LIU S L, WU Z B, PANG W K, JOHANNESSEN B, TANG Y G, LUO J L, WANG H Y, GUO Z P. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage[J]. ACS Nano, 2019,13(10):11843-11852.  

    23. [23]

      PENG T, LUO Y H, TANG L B, HE Z J, YAN C, MAO J, DAI K H, WU X W, ZHENG J C. MoSe2@N, P, C composites for sodium ion battery[J]. J. Cent. South Univ., 2022,29(9):2991-3002.

    24. [24]

      GAN X R, LEE L Y S, WONG K Y, LO T W, HO K H, LEI D Y, ZHAO H M. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies[J]. ACS Appl. Energy Mater., 2018,1(9):4754-4765.  

    25. [25]

      KONG W Q, ZHU J, ZHANG M, LIU Y Y, HU J W. Three-dimensional N-and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor[J]. Microporous Mesoporous Mater., 2018,268:260-267.

    26. [26]

      FAN X, CHEN L N, WANG Y J, XU X Y, JIAO X X, ZHOU P, LIU Y Y, SONG Z G, ZHOU Y. Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc-ion battery[J]. Nano-Micro Lett., 2024,16(1)270.  

    27. [27]

      LI S W, LIU Y C, ZHAO X D, CUI K X, SHEN Q Y, LI P, QU X H, JIAO L F. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage[J]. Angew. Chem.‒Int. Edit., 2021,133(37):20448-20455.

    28. [28]

      DHARMAN R K, IM H, KABIRAZ M K, KIM J, SHEJALE K P, CHOI S, HAN J W, KIM S Y. Stable 1T-MoS2 by facile phase transition synthesis for efficient electrocatalytic oxygen evolution reaction[J]. Small Methods, 2024,8(7)2301251.

    29. [29]

      PRABHAKARAN S, PRABHAKARAN S, KIM D. Ni-P codoping engineered MoS2 basal planes for electrocatalytic water splitting: Insights from density functional theory[J]. J. Mater. Chem. A, 2024,12(41):28170-28176.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(0)
  • Abstract views(50)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return