Citation: Xiaoru LIU, Jinlian SHI, Yajia ZHENG, Shuangcun MO, Zhongxuan XU. Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328 shu

Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives

  • Corresponding author: Zhongxuan XU, xuzhongxuan4201@163.com
  • Received Date: 8 September 2024
    Revised Date: 22 February 2025

Figures(8)

  • Under hydrothermal conditions, semi-rigid 4-(1-carboxyethoxy)benzoic acid (H2cba) and Ni(Ⅱ) ions reacted with imidazole derivatives 1,4-di(1H-imidazol-1-yl)benzene (1,4-dib) and 4,4'-di(1H-imidazol-1-yl)-1,1'-biphenyl (4, 4' dib) to form complexes {[Ni(cba)(1, 4 dib)(H2O)0.5] ·0.5H2O}n (HU21) and {[Ni(cba)(4, 4' dib)(H2O)0.5] · 0.5H 2O}n (HU22), respectively. Singlecrystal X-ray diffraction analysis revealed that both complexes HU21 and HU22 contain binuclear [Ni2(CO2)2(H2O)]2+ units, which are further bridged together via cba2- anions to form 1D [Ni2(H2O)(cba)2]n chains in HU21 and HU22. In addition to the [Ni2(H2O)(cba)2]n chains, large right-handed and lefthanded helical chains were constructed by Ni(Ⅱ) ions, water molecules, and 1,4-dib ligands in HU21, with diameters of up to 1.6 nm along the b-axis. These helical chains are further joined together in a 1∶1 ratio to form a 3D framework. Subsequently, the [Ni2(H2O)(cba)2]n chains are incorporated into the 3D framework to build a six-connected dense network with a point symbol of (44.611) in HU21. In complex HU22, left-and right-handed helical chains were also observed. However, unlike the 3D framework constructed by helical chains in HU21, these helical chains in HU22 can only form a 2D layer. Adjacent layers are packed together in an ABAB pattern to form a six-connected framework in the presence of [Ni2(H2O) (cba)2]n chains. UV-Vis absorption experiments indicated that complexes HU21 and HU22 are semiconductor materials with strong light absorption capacities in the ultraviolet and visible regions. Moreover, magnetic experiments showed that HU21 and HU22 exhibit similar antiferromagnetic behaviors.
  • 加载中
    1. [1]

      DONG J, LIU Y, CUI Y. Supramolecular chirality in metal-organic complexes[J]. Acc. Chem. Res., 2021,54:194-206. doi: 10.1021/acs.accounts.0c00604

    2. [2]

      CHAKRABORTY G, PARK I, MEDISHETTY R, VITTAL J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121:3751-3891. doi: 10.1021/acs.chemrev.0c01049

    3. [3]

      ZHAO Y W, GUO L E, ZHANG F Q, YAO J, ZHANG X M. Turn-on fluorescence enantioselective sensing of hydroxyl carboxylic enantiomers by metal-organic framework nanosheets with a homochiral tetracarboxylate of cyclohexane diamide[J]. ACS Appl. Mater. Interfaces., 2021,13:20821-20829. doi: 10.1021/acsami.1c02897

    4. [4]

      LIAO Y Q, XIONG T Z, XIE K L, ZHANG H, HU J J, WEN H R. Two multifunctional Dy(Ⅲ)-based metal-organic frameworks exhibiting proton conduction, magnetic properties and second-harmonic generation[J]. CrystEngComm, 2024,26:2033-2042. doi: 10.1039/D4CE00065J

    5. [5]

      XU X, GAO L, YUAN S. Stepwise construction of multi-component metal-organic frameworks[J]. Dalton Trans., 2023,52:15233-15252. doi: 10.1039/D3DT01668D

    6. [6]

      TAN X, LI L, ZHANG J, HAN X, JIANG L, LI F, SU C Y. Three-dimensional phosphine metal-organic frameworks assembled from Cu(Ⅰ) and pyridyl diphosphine[J]. Chem. Mater., 2012,24:480-485. doi: 10.1021/cm202608f

    7. [7]

      GHEORGHE A, TEPASKE M A, TANASE S. Homochiral metal-organic frameworks as heterogeneous catalysts[J]. Inorg. Chem. Front., 2018,5:1512-1523. doi: 10.1039/C8QI00063H

    8. [8]

      TANAKA K, SAKURAGI K, OZAKI H, TAKADA Y. Highly enantioselective Friedel-Crafts alkylation of N, N-dialkylanilines with trans-β-nitrostyrene catalyzed by a homochiral metal-organic framework[J]. Chem. Commun., 2018,54:6328-6331. doi: 10.1039/C8CC03447H

    9. [9]

      SLATER B, WANG Z, JIANG S, HILL M R, LADEWIG B P. Missing linker defects in a homochiral metal-organic framework: Tuning the chiral separation capacity[J]. J. Am. Chem. Soc., 2017,139:18322-18327. doi: 10.1021/jacs.7b10112

    10. [10]

      LIU H, WU Z, CHEN J, WANG J, QIU H. Recent advances in chiral liquid chromatography stationary phases for pharmaceutical analysis[J]. J. Chromatogr. A, 2023,1708464367.

    11. [11]

      DING M, YANG L, ZENG J, YAN X, WANG Q. Orderly MOF-assembled hybrid monolithic stationary phases for nano-flow HPLC[J]. Anal. Chem., 2020,92:15757-15765. doi: 10.1021/acs.analchem.0c02706

    12. [12]

      DENG Z P, JI B T, CHEN J H, ZHAO B, LI J G, SUN Y X, SUN Y. A multifunctional fluorescence probe based on a new Cd-MOF for HSO4-, acidic amino acids, and continuous basic amino acids detection[J]. J. Mol. Struct., 2024,1299137132.

    13. [13]

      LI Y Q, ZHAO L, LI J Y, XIE S S, LIANG N. Synthesis of cyclodextrin-based MOFs incorporating amino acid chiral ligands for chiral separation of naproxen enantiomers[J]. Microchem. J., 2023,190108684.

    14. [14]

      CHU J Q, LI L, LIU L, HAN Z B. A twelve-connected 3D mixed valence Ni(Ⅱ)/Ni(Ⅲ) metal-organic framework based on hexnuclear nickel clusters building unit: Synthesis, structure and magnetic properties[J]. Inorg. Chem. Commun., 2022,140109431. doi: 10.1016/j.inoche.2022.109431

    15. [15]

      FU H, REN D D, ZHANG K, CHEN H, LU X, DING Q R, MA L F. Induced absolute configuration of achiral tetradentate ligands in metal-organic frameworks for circularly polarized luminescence[J]. Chin. J. Chem., 2024,42:1260-1266. doi: 10.1002/cjoc.202300645

    16. [16]

      FU H, REN D D, ZHANG K, ZHANG R Y, LU X Y, WU Y P, AZNAREZ F, DING Q R, MA L F, LI D S. Circularly polarized luminescence of tetradentate-ligand-based chiral MOFs: Structural evidence of chirality inversion[J]. ACS Mater. Lett., 2024,6:2559-2568. doi: 10.1021/acsmaterialslett.4c00619

    17. [17]

      PAN Q, GU Z X, ZHOU R J, FENG Z J, XIONG Y A, SHA T T, YOU Y M, XIONG R G. The past 10 years of molecular ferroelectrics: Structures, design, and properties[J]. Chem. Soc. Rev., 2024,53:5781-5861. doi: 10.1039/D3CS00262D

    18. [18]

      ZHENG J, WANG P, YUAN J, LIU M, LI Y X, ZHAO Y, DANG L L, ZHAO J, MA L F. Selective construction and effective photothermal conversion of octanuclear metallacage and dinuclear metallatriangle based on the tetraphenylethylene unit[J]. J. Solid State Chem., 2024,339124918. doi: 10.1016/j.jssc.2024.124918

    19. [19]

      CAO R, LI X, ZHANG T, TANG H, SONG Y, ZHANG Z, FENG W. An effective turn-on/off rhodamine-encapsulated UiO-67-NH2 fluorescent probe for simultaneous As5+/Fe3+ detection[J]. J. Solid State Chem., 2024,339124950. doi: 10.1016/j.jssc.2024.124950

    20. [20]

      PENG D, LIN W, PAN H, ZHI X, ZHOU Q, YI L, WANG F, REN G, PAN Q. Fluorescence detection of Al3+ and mechanism exploration based on La-MOF[J]. J. Solid State Chem., 2024,339124946. doi: 10.1016/j.jssc.2024.124946

    21. [21]

      GAO P, ZHANG K, REN D, LIU H, ZHANG H, FU H, MA L, LI D. Host-guest chemistry of chiral MOFs for multicolor circularly polarized luminescence including room temperature phosphorescence[J]. Adv. Funct. Mater., 2023,332300105.

    22. [22]

      FU H, WANG N, WU X, LI F, ZHAO Y, MA L, DU M. Circularly polarized room-temperature phosphorescence and encapsulation engineering for MOF-based fluorescent/phosphorescent white light-emitting devices[J]. Adv. Opt. Mater., 2020,82000330. doi: 10.1002/adom.202000330

    23. [23]

      GUAN M X, LI H Z, LI S, YANG H J, WANG F, ZHANG J. Syntheses, crystal structures and properties of a series of isostructural lanthanide organic frameworks[J]. Dalton Trans., 2024,53:11021-11037.

    24. [24]

      LI H, YANG S J, DONG M Y, TANG G M, WANG Y T, NG S W. The effect of halides on Cd(Ⅱ)-based metal coordination complexes with indazole and benzimidazole skeletons: Crystal structure, Hirshfeld surface analysis and properties[J]. Polyhedron, 2024,261117111.

    25. [25]

      XU X B, LIU M Y, LIU Z L. Crystal structures and the ferroelectric properties of homochiral metal-organic frameworks constructed from a single chiral ligand[J]. Dalton Trans., 2020,49:10402-10406. doi: 10.1039/D0DT01323D

    26. [26]

      YU L, WANG X, CHENG M, RONG H, SONG Y, LIU Q. A three-dimensional copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors[J]. Cryst. Growth Des., 2018,18:280-285.

    27. [27]

      XIAO Y, YANG H, HONG A N, WANG Y, BU X, FENG P. In situ synthesized homochiral spiroborate ester metal-organic framework with mono-, di-, and trivalent cations[J]. Chem. Asian J., 2022,17e202200918.

    28. [28]

      GONG W, CHEN X, FAHY K M, DONG J, LIU Y, FARHA O K, CUI Y. Reticular chemistry in its chiral form: Axially chiral Zr(Ⅳ)-spiro metal-organic framework as a case study[J]. J. Am. Chem. Soc., 2023,145:13869-13878.

    29. [29]

      WANG X F, GUO X Y, LIU T. Two Co(Ⅱ)-based coordination polymers constructed from π-electron-rich polycarboxylate aryl ether ligand: Structural insight and photocatalytic dye degration[J]. Chin. J. Struct. Chem., 2011,40:722-728.

    30. [30]

      LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932.

    31. [31]

      MEI Z Z, WANG H Y, KANG X Q, SHAO Y L, GU J Z. Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands[J]. Chinese J. Inorg. Chem., 2024,40:1795-1802.

    32. [32]

      ZHU X F, WANG S T, HAN H T, HANG X X, XIE W B, LIAO W P. Assembly of metal-calixarene compounds with a ditetrazole linker: From isolated cluster, coordination chain to coordination cage[J]. Cryst. Growth Des., 2018,18:225-229.

    33. [33]

      ZHANG X X, NIU Y Y. Synthesis of metal coordination compounds containing benzimidazole tripod ligand and their adsorption properties for iodine[J]. Chinese J. Inorg. Chem., 2024,40:111-123.

    34. [34]

      FU H R, REN D D, ZHANG K, WANG S, YANG X J, DING Q R, WU Y P. Hierarchical chiral MOFs with the induced chirality of AIE ligands exhibiting non-reciprocal CPL[J]. Chem. Commun., 2024,60:6182-6185.

    35. [35]

      WANG G F, SUN S W, ZHAO Y F, MENG L X, WEI B H. Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone[J]. Chinese J. Inorg. Chem., 2024,40:849-856.

    36. [36]

      TAY H M, KYRATIS N, THOONEN S, BOER S A, TURNER D R, HUA C. Synthetic strategies towards chiral coordination polymers[J]. Coord. Chem. Rev., 2021,435213763.

    37. [37]

      XU Z, XIAO Y, KANG Y, ZHANG L, ZHANG J. Homochiral cluster-organic frameworks constructed from enantiopure lactate derivatives[J]. Cryst. Growth Des., 2015,15:4676-4686.

    38. [38]

      GU Z G, ZHAN C, ZHANG J, BU X. Chiral chemistry of metal-camphorate frameworks[J]. Chem. Soc. Rev., 2016,45:3122-3144.

    39. [39]

      XU Z, MA Y, ZHANG L, ZHANG J. A couple of Co(Ⅱ) enantiomers constructed from semirigid lactic acid derivatives[J]. Inorg. Chem. Commun., 2016,73:115-118.

    40. [40]

      MUKHERJEE P S, KONAR S, ZANGRANDO E, MALLAH T, RIBAS J, CHAUDHURI N R. Structural analyses and magnetic properties of 3D coordination polymeric networks of nickel(Ⅱ) maleate and manganese(Ⅱ) adipate with the flexible 1, 2-bis(4-pyridyl)ethane ligand[J]. Inorg. Chem., 2003,43:2695-2703.

    41. [41]

      YIN X J, YANG J, XU Y Y, WU M J, XU Z X. Chiral Ni(Ⅱ)-based coordination polymers with helixes and dinuclear clusters constructed from lactate synthons[J]. J. Solid State Chem., 2024,334124679.

    42. [42]

      YAN Y, WU C, HE X, SUN Y, LU C. Hydrothermal synthesis of three novel multidimensional metal-organic frameworks with unusual units and mixed ligands[J]. Cryst. Growth Des., 2005,5:821-827.

  • 加载中
    1. [1]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    2. [2]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    3. [3]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    4. [4]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    8. [8]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    9. [9]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    10. [10]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    11. [11]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    12. [12]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    13. [13]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    14. [14]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    15. [15]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    18. [18]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    19. [19]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    20. [20]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

Metrics
  • PDF Downloads(0)
  • Abstract views(26)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return