Processing math: 100%

Citation: Hao XU, Ruopeng LI, Peixia YANG, Anmin LIU, Jie BAI. Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302 shu

Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study

  • Corresponding author: Hao XU, xuhao@imut.edu.cn
  • Received Date: 30 December 2024
    Revised Date: 18 February 2025

Figures(6)

  • A series of halogen axial coordination atoms-modified Fe-N4 (Fe atoms coordinated with four N atoms on the same horizontal plane to form bonds) models (Fe-N4-F/C, Fe-N4-Cl/C, and Fe-N4-Br/C) were constructed based on the density functional theory. All density functional theory (DFT) calculations were carried out using the Dmol3 code in the Materials Studio package. By calculating the partial density of states, Mulliken charge, adsorption energy of intermediates, and free energy of oxygen reduction reaction (ORR), the regulation mechanism of halogen axial coordination atoms on the electronic structure and adsorption behavior of Fe atoms was studied. The structure-activity relationship between halogen axial coordination atoms and the catalytic activity of the Fe-N4 site was also investigated. The results of calculations reveal that the introduction of Br as the halogen axial coordination atoms can optimize the electronic structure of the Fe atom, thus weakening the bonding strength of OH* intermediates on the Fe center. As a result, the Fe-N4-Br/C possesses a lower energy barrier of the rate-determining step (desorption of OH* intermediates) compared to Fe-N4/C, indicating better ORR kinetics process and intrinsic activity of the Fe-N4-Br/C. Therefore, it is speculated that the introduction of halogen axial coordination atoms can improve the catalytic activity of Fe-N4 sites for ORR.
  • 发展氢燃料电池和锌-空气电池等具有高能量密度和低污染特性的新型能源转换装置是推动实现“碳中和”和“碳达峰”目标的重要途径[1-6]。然而,氢燃料电池和锌-空气电池的实际输出性能受到阴极缓慢的氧还原反应(ORR)动力学过程限制,难以满足实际的生产生活需求[7-11]。尽管铂基材料作为ORR催化剂展现出较高的催化活性,但铂作为贵金属具有储量稀缺和成本高昂等劣势,制约了铂基催化剂的大规模应用[12]。因此,开发一种高效廉价的非贵金属ORR催化剂取代铂基催化剂,对于推动氢燃料电池和锌-空气电池的发展应用具有十分重要的意义[13]

    在众多的非贵金属催化剂当中,铁氮共掺杂碳基材料(Fe-N4/C)因其良好的ORR活性而被视为铂基催化剂的理想替代者[14]。大多数文献报道认为原子级分散的Fe-N4位点(Fe原子与同一水平面的4个N原子配位成键)是Fe-N4/C催化剂中最主要的ORR活性中心,因此近年来吸引众多研究者在单原子Fe-N4/C催化剂的设计和制备方面开展了大量的工作[15]。例如,冯新亮教授团队[16]采用原位锚定法制备得到了一种具有高载量Fe-N4位点(每克催化剂含有4.57×1020个位点)的Fe-N4/C催化剂,该催化剂在酸性介质中的半波电位高达0.83 V。然而随着研究工作的不断深入,许多报道发现Fe-N4位点对ORR中间体的吸附作用太强,使得OH*中间体难以从催化剂表面顺利解吸脱附,阻碍了后续ORR基元反应的顺利进行,导致单原子Fe-N4/C催化剂的反应动力学过程和本征活性难以进一步改善[17-18]。因此,目前迫切需要开发一种调控策略来适当降低Fe-N4位点对OH*的吸附强度,这对于高活性Fe-N4/C催化剂的研制具有重要意义。

    为了改善Fe-N4/C催化剂的动力学过程和本征活性,研究者尝试通过引入F、Cl和Br等卤族原子作为Fe-N4位点的轴向配位原子以优化Fe中心对OH*的吸附强度[19]。例如,东北林业大学李斌教授团队[20]通过热解法制备了原子级分散的Fe-N4-Cl/C催化剂。得益于轴向配位Cl原子的引入,该催化剂在碱性中的催化活性显著高于商用Pt/C催化剂。然而,这些研究工作大多聚焦在卤族轴向配位原子修饰Fe-N4/C催化剂的合成工艺和ORR性能测试上,卤族轴向配位原子对Fe中心电子结构和吸附行为的调控机理却往往被忽视,不同卤族轴向原子与Fe-N4位点本征活性之间的构效关系也尚不清楚,这都极大地制约了高性能Fe-N4/C氧还原催化剂的设计和开发工作。

    目前密度泛函理论计算在含Fe体系中已得到广泛和成熟的应用,科研人员普遍认可其在电子结构和电荷分布计算中的可靠性和准确性。在此背景下,我们基于密度泛函理论构建了一系列不同卤族轴向配位原子修饰的碳载Fe-N4位点模型(Fe-N4-X/C,X代表F、Cl和Br),通过计算态密度、Mulliken电荷、中间体吸附能以及ORR自由能,深入研究F、Cl和Br卤族轴向配位原子对Fe中心电子结构和吸附行为的调控机理,明确了不同卤族轴向原子与Fe-N4位点本征活性之间的构效关系。计算结果表明,引入Br原子作为轴向配位原子可以有效地优化Fe原子的电子环境,从而削弱OH*在Fe中心的吸附强度,促进OH*解吸反应顺利进行。与Fe-N4/C相比,Fe-N4-Br/C模型具有更低的决速步骤(即OH*解吸)反应能垒。因此预测卤族轴向配位原子修饰策略能够改善Fe-N4位点的氧还原本征催化活性。

    所有计算均基于Materials Studio软件包中的Dmol3模块开展[21-26]。通过广义梯度近似(GGA)中的Perdew-Burke-Ernzerhof(PBE)泛函描述交换关联作用。能量收敛阈值、最大力收敛阈值和位移收敛阈值分别设置为10-5 Ha、0.02 Ha·nm-1和0.05 nm-1。采用双数值加极化(DNP)基组进行结构弛豫。为了避免周期性结构之间的相互影响,为各模型设置了高度为2 nm的真空层。Fe-N4/C模型的单胞边长为0.984 nm×0.864 nm(模型中的碳以石墨烯式碳原子的形式存在),单胞中的原子个数为39。在此基础上,又分别构建了Fe-N4-F/C、Fe-N4-Cl/C和Fe-N4-Br/C模型,各模型单胞边长为0.984 nm×0.864 nm,单胞中的原子个数为40。为了真实模拟电解液中Fe-N4-X/C表面的氧还原中间体吸附行为,将计算溶剂设置为水。

    根据下式计算各模型的相互作用能(Eint)[21]

    Eint=EFeN4X/CEFeEN4X/C

    (1)

    其中,EFeN4X/C, EFeEN4X/C分别为Fe-N4-X/C模型、Fe中心原子和N4-X/C基底的能量。

    根据下式计算ORR中间体在活性位点上的吸附能(Eads)[21]

    Eads =Etotal Esub Eint 

    (2)

    其中,EtotalEsubEint分别为吸附有中间体的Fe-N4-X/C的总能量、Fe-N4-X/C基底的能量和中间体的能量。

    为了研究卤族轴向配位原子(F、Cl和Br)对Fe-N4活性中心电子结构和吸附行为的调控机制,明确不同卤族轴向配位原子与Fe-N4位点本征活性之间的构效关系,我们基于密度泛函理论首先分别构建了Fe-N4/C、Fe-N4-F/C、Fe-N4-Cl/C和Fe-N4-Br/C模型。如图 1所示,F、Cl和Br原子作为轴向配位原子与Fe原子直接成键,并垂直于Fe-N4/C平面。ORR中间体(OOH*、O*和OH*)在各位点模型上的稳定吸附构型如图 2所示。

    图 1

    图 1.  (A) Fe-N4-F/C、(B) Fe-N4-Cl/C和(C) Fe-N4-Br/C模型的原子结构
    Figure 1.  Atomic structures of (A) Fe-N4-F/C, (B) Fe-N4-Cl/C, and (C) Fe-N4-Br/C models

    图 2

    图 2.  (A) Fe-N4-F/C@OOH*、(B) Fe-N4-F/C@O*、(C) Fe-N4-F/C@OH*、(D) Fe-N4-Cl/C@OOH*、(E) Fe-N4-Cl/C@O*、(F) Fe-N4-Cl/C@OH*、(G) Fe-N4-Br/C@OOH*、(H) Fe-N4-Br/C@O*和(I) Fe-N4-Br/C@OH*模型的原子结构
    Figure 2.  Atomic structures of (A) Fe-N4-F/C@OOH*, (B) Fe-N4-F/C@O*, (C) Fe-N4-F/C@OH*, (D) Fe-N4-Cl/C@OOH*, (E) Fe-N4-Cl/C@O*, (F) Fe-N4-Cl/C@OH*, (G) Fe-N4-Br/C@OOH*, (H) Fe-N4-Br/C@O*, and (I) Fe-N4-Br/C@OH* models

    文献报道普遍认为Fe-N4上的ORR决速步骤是OH*的解吸,因此可以通过削弱Fe中心对OH*的吸附强度以增强Fe-N4/C催化剂的活性[21]。我们通过计算各位点模型的电子结构,探究不同Fe-N4-X位点对OH*的吸附强度。如图 3A所示,投影态密度(projected density of states, PDOS)计算结果显示,相比于Fe-N4-F/C和Fe-N4/C模型,Fe-N4-Cl/C和Fe-N4-Br/C模型中的Fe原子的d带中心发生显著负移,其中以Fe-N4-Br/C最为显著。根据Nørskov教授[27]提出的d能带中心理论可知,d能带中心的能级高低决定了吸附成键的稳定性和强度。Br原子的引入导致Fe原子的d带中心负移,距离费米能级更远,从而削弱了Fe中心对ORR中间体的吸附强度[18]。此外根据Mulliken电荷计算结果(图 3B),Fe-N4-Br/C@OH*模型中的Fe原子表现出更少的正电荷,表明Fe-N4-Br/C@OH*中的Fe原子带有更多的电子,从而优化了Fe位点d轨道自旋电子的填充程度,最终削弱OH*在催化剂表面的吸附强度[18]。通过上述分析推测可知,Fe-N4-Br/C模型对OH*的吸附强度应低于Fe-N4-F/C和Fe-N4-Cl/C模型。

    图 3

    图 3.  (A) Fe-N4/C和Fe-N4-X/C模型中Fe原子的PDOS; (B) Fe-N4/C@OH*和Fe-N4-X/C@OH*模型中Fe原子的Mulliken电荷分布
    Figure 3.  (A) PDOS of Fe atom in Fe-N4/C andFe-N4-X/C models; (B) Mulliken charge of Fe atom in Fe-N4/C@OH* and Fe-N4-X/C@OH* models

    表 1为ORR中间体在各位点模型上的吸附能计算结果。据此结果可以初步预测,Cl和Br轴向配位原子的引入可能会在一定程度上削弱Fe中心对OH*的吸附强度。此外如表 2所示,与Fe-N4-F/C和Fe-N4-Cl/C模型相比,Fe-N4-Br/C在吸附OH*时展现出更大的Fe—O键长,从另一个方面说明了Fe-N4-Br位点对OH*具有更弱的吸附作用。综上所述,引入Br原子作为轴向配体可以优化Fe原子的电子环境,削弱OH*在Fe中心的吸附强度。

    表 1

    表 1  中间体在Fe-N4/C和Fe-N4-X/C上的吸附能
    Table 1.  Adsorption energies of intermediates on Fe-N4/C and Fe-N4-X/C eV
    下载: 导出CSV
    Sample OOH* O* OH*
    Fe-N4/C -1.524 -4.102 -2.696
    Fe-N4-F/C -1.673 -3.861 -2.750
    Fe-N4-Cl/C -1.507 -3.633 -2.599
    Fe-N4-Br/C -1.488 -3.612 -2.577

    表 2

    表 2  Fe-N4-X/C@OH*模型中的Fe—O键长
    Table 2.  Bond lengths of Fe—O in Fe-N4-X/C@OH* models
    下载: 导出CSV
    Model dFeO /nm
    Fe-N4-F/C@OH* 0.187 7
    Fe-N4-Cl/C@OH* 0.188 0
    Fe-N4-Br/C@OH* 0.188 1

    在上述研究基础上,进一步计算了Fe-N4/C、Fe-N4-F/C,Fe-N4-Cl/C和Fe-N4-Br/C模型上的ORR自由能。由图 4和图S1(Supporting information)可知,在平衡电极电势(U=1.23 V)下,Fe-N4/C和各Fe-N4-X/C上的ORR决速步骤均为OH*的解吸反应,这与之前的文献报道相一致[28]。与Fe-N4/C相比,Fe-N4-F/C展现出更高的决速步骤能垒,表明Fe-N4-F位点上的OH*解吸步骤难以顺利进行,因此展现出缓慢的ORR反应动力学过程和较低的本征活性,这归应于Fe-N4-F位点对OH*过强的吸附作用。形成鲜明对比的是,Fe-N4-Cl/C和Fe-N4-Br/C模型上的决速步骤能垒显著低于Fe-N4/C,表明OH*解吸步骤能够在Fe-N4-Cl和Fe-N4-Br位点上顺利进行。值得注意的是,在构建的各模型中,Fe-N4-Br/C模型具有最低的决速步骤能垒,从而证明该模型具有更高效的ORR反应动力学过程和更高的本征活性,这归应于Fe-N4-Br位点对OH*较弱的吸附作用。

    图 4

    图 4.  ORR在(A)Fe-N4-F/C、(B) Fe-N4-Cl/C和(C) Fe-N4-Br/C模型上的自由能; (D) OH*吸附能与决速步骤能垒之间的关系
    Figure 4.  Free energy of ORR on (A) Fe-N4-F/C, (B) Fe-N4-Cl/C, and (C) Fe-N4-Br/C models; (D) Relationship between the adsorption energy of OH* and the energy barrier of the rate-determining step

    图 4D所示,进一步研究发现OH*的吸附强度与OH*解吸决速步骤的反应能垒之间存在正比例线性关系。随着OH*吸附强度的减弱,决速步骤的能垒也随之降低。Fe-N4-F/C对OH*的吸附最强,OH*很难在该模型上解吸,因此制约了后续ORR的顺利进行,导致缓慢的动力学过程; 而Fe-N4-Br/C对OH*的吸附最弱,OH*能够在该模型上顺利解吸,因此展现出高效的动力学过程和活性。综上所述,与Fe-N4/C、Fe-N4-F/C和Fe-N4-Cl/C模型相比,Fe-N4-Br/C模型具有更低的OH*吸附强度和更低的决速步骤反应能垒,表明Fe-N4-Br/C点具有更快的ORR动力学过程和更高的本征催化活性。因此预测Fe-N4-Br/C应是一种高活性的ORR催化剂。

    除了动力学过程和本征催化活性,结构稳定性也是评估催化剂性能的一项重要指标。文献报道普遍认为催化剂模型的相互作用能越高,其结构稳定性随之越强[21]。因此我们通过计算相互作用能以评估各Fe-N4-X/C模型的结构稳定性。如表 3所示,相比于Fe-N4-F/C和Fe-N4-Cl/C,Fe-N4-Br/C展现出更高的相互作用能,说明Fe-N4-Br/C模型比Fe-N4-F/C和Fe-N4-Cl/C具有更高的稳定性。

    表 3

    表 3  Fe中心与N4-X/C基底之间的相互作用能
    Table 3.  Interaction energies between Fe center and N4-X/C group
    下载: 导出CSV
    Paramater Fe-N4-F/C Fe-N4-Cl/C Fe-N4-Br/C
    Eint /eV 2.263 3.322 3.394

    在上述研究基础上,我们还分别构建了碳载Fe-N3Br-Br(Fe原子与同一水平面的3个N原子、1个Br原子以及轴向的1个Br原子共同配位成键)和碳载Fe-N2Br2-Br(Fe原子与同一水平面的2个N原子、2个Br原子以及轴向的1个Br原子共同配位成键)位点,以探究Br原子掺杂浓度对ORR动力学过程和本征催化活性的影响规律。如图 5所示,Fe-N3Br-Br/C和Fe-N2Br2-Br/C模型在几何优化后发生明显的结构畸变,证明上述结构稳定性较差。此外,自由能计算结果显示(图 6),Fe-N3Br-Br/C和Fe-N2Br2-Br/C上的ORR决速步骤仍为OH*解吸反应,其对应的反应能垒分别高达0.823和1.941 eV,远远高于Fe-N4-Br/C上的反应能垒。由此可见,随着Br原子掺杂浓度的增加,决速步骤的反应能垒也随之不断增高,表明过度增加Br原子掺杂浓度反而会阻碍OH*的解吸,导致催化剂的ORR本征活性显著降低。

    图 5

    图 5.  (A) Fe-N2Br2-Br/C和(B) Fe-N3Br-Br/C模型的原子结构
    Figure 5.  Atomic structures of (A) Fe-N2Br2-Br/C and (B) Fe-N3Br-Br/C models

    图 6

    图 6.  ORR在(A) Fe-N3Br-Br/C和(B) Fe-N2Br2-Br/C模型上的自由能

    O2* represent the adsorption of O2 on the catalyst surface.

    Figure 6.  Free energy of ORR on (A) Fe-N3Br-Br/C and (B) Fe-N2Br2-Br/C models

    综上所述,我们基于密度泛函理论构建了卤族轴向配位原子修饰的碳载Fe-N4位点模型(Fe-N4-F/C、Fe-N4-Cl/C和Fe-N4-Br/C),通过计算各位点模型的投影态密度、Mulliken电荷和吸附能,证明引入Br、Cl原子作为轴向配位原子能够优化Fe-N4周围的电子环境,从而削弱Fe中心对OH*的吸附强度。自由能计算结果表明,相比于Fe-N4/C模型,Fe-N4-Br/C具有更低的OH*解吸能垒,说明卤族轴向配位原子修饰策略能够改善Fe-N4位点的氧还原本征催化活性,这得益于对OH*较弱的吸附强度。本工作为探究卤族轴向配位原子对Fe中心电子结构和吸附行为的调控机理提供了有价值的见解,进一步明确了不同卤族轴向原子与Fe-N4位点本征活性之间的构效关系。

    Supporting information is available at http://www.wjhxxb.cn


    1. [1]

      YI X Y, YANG H J, YANG X X, LI X K, YAN C, ZHANG J H, CHEN L A, DONG J J, QIN J, ZHANG G N, WANG J J, LI W B, ZHOU Z Y, WU G, LI X F. Local single co sites at the second shell of Fe-N4 active sites to boost oxygen reduction reaction[J]. Adv. Funct. Mater., 2023,34(9)2309728.

    2. [2]

      WANG Y P, KATYAL N, TANG Y, LI H, SHIN K, LIU W Q, HE R L, XU M W, HENKELMAN G, BAO S J. One-step pyrolysis construction of bimetallic atom-cluster sites for boosting bifunctional catalytic activity in Zn-air batteries[J]. Small, 2023,20(11)2306504.

    3. [3]

      SONG X K, SONG Y J, LI X P, WU X T, WANG Z Q, SUN X H, AN M, WEI X Q, ZHAO Y J, WEI J M, BI C L, SUN J H, NARA H, YOU J M, YAMAUCHI Y. Multi-scale engineered 2D carbon polyhedron array with enhanced electrocatalytic performance[J]. Small, 2023,20(11)2305459.

    4. [4]

      SHEN M X, LIU J, LI J, DUAN C, XIONG C Y, ZHAO W, DAI L, WANG Q Y, YANG H, NI Y H. Breaking the N-limitation with N-enriched porous submicron carbon spheres anchored Fe single-atom catalyst for superior oxygen reduction reaction and Zn-air batteries[J]. Energy Storage Mater., 2023,59102790. doi: 10.1016/j.ensm.2023.102790

    5. [5]

      LU X Y, YANG P X, WAN Y B, ZHANG H L, XU H, XIAO L H, LI R P, LI Y Q, ZHANG J Q, AN M Z. Active site engineering toward atomically dispersed M-N-C catalysts for oxygen reduction reaction[J]. Coord. Chem. Rev., 2023,495215400. doi: 10.1016/j.ccr.2023.215400

    6. [6]

      LI L, LI N, XIA J W, ZHOU S L, QIAN X Y, YIN F X, DAI G H, HE G Y, CHEN H Q. A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries[J]. Nano Res., 2023,16(7):9416-9425. doi: 10.1007/s12274-023-5625-y

    7. [7]

      LIU M, WANG X M, CAO S F, LU X Q, LI W, LI N, BU X H. Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction[J]. Adv. Mater., 2024,36(19)2309231. doi: 10.1002/adma.202309231

    8. [8]

      LI Z J, JI S Q, LIU H X, XU C, GUO C M, LU X, SUN H X, DOU S, XIN S X, HORTON J H, HE C. Constructing asymmetrical coordination microenvironment with phosphorus-incorporated nitrogen-doped carbon to boost bifunctional oxygen electrocatalytic activity[J]. Adv. Funct. Mater., 2024,34(18)2314444. doi: 10.1002/adfm.202314444

    9. [9]

      CHEN C L, CHAI J, SUN M R, GUO T Q, LIN J, ZHOU Y R, SUN Z Y, ZHANG F, ZHANG L, CHEN W X, LI Y J. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction[J]. Energy Environ. Sci., 2024,17(6):2298-2308. doi: 10.1039/D4EE00134F

    10. [10]

      ZHAO C X, LIU X Y, LIU J N, WANG J, WAN X, WANG C D, LI X Y, SHUI J L, SONG L, PENG H J, LI B Q, ZHANG Q. Molecular recognition regulates coordination structure of single atom sites[J]. Angew. Chem.‒Int. Edit., 2023,62(48)202313028. doi: 10.1002/anie.202313028

    11. [11]

      YU T, CHE Y T, FU H, MA D F, ZHAO W J, YAN S T, BIAN T, ZHANG L T. N, S dual-doped carbon aerogels-supported Co9S8 nanoparticles as efficient oxygen reduction reaction electrocatalyst for zinc-air battery[J]. J. Alloy. Compd., 2023,948169792. doi: 10.1016/j.jallcom.2023.169792

    12. [12]

      LIU H, JIANG L Z, WANG Y M, WANG X X, KHAN J, ZHU Y L, XIAO J M, LI L N, HAN L. Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon[J]. Chem. Eng. J., 2023,452138938. doi: 10.1016/j.cej.2022.138938

    13. [13]

      XU S R, YIN H B, XUE D P, XIA H C, ZHAO S Y, YAN W F, MU S C, ZHANG J N. Atomically dispersed metal-nitrogen-carbon catalysts for oxygen reduction reaction[J]. Chem. J. Chinese Universities, 2022,43(5)20220028.

    14. [14]

      LIU Y R, YUAN S, SUN C T, WANG C L, LIU X J, LV Z H, LIU R, MENG Y Z, YANG W X, FENG X, WANG B. Optimizing Fe-3d electron delocalization by asymmetric Fe-Cu diatomic configurations for efficient anion exchange membrane fuel cells[J]. Adv. Energy Mater., 2023,13(46)2302719. doi: 10.1002/aenm.202302719

    15. [15]

      LIU Z H, MA F X, FAN H S, LIU Z Q, DU Y, ZHEN L, XU C Y. Formulating N-doped carbon hollow nanospheres with highly accessible through-pores to isolate Fe single-atoms for efficient oxygen reduction[J]. Small, 2023,20(6)2305700.

    16. [16]

      ZHOU Y Z, CHEN G B, WANG Q, WANG D, TAO X F, ZHANG T R, FENG X L, MüLLEN K. Fe-N-C Electrocatalysts with densely accessible Fe-N4 sites for efficient oxygen reduction reaction[J]. Adv. Funct. Mater., 2021,31(34)2102420.

    17. [17]

      ZHU P, XIONG X, WANG X L, YE C L, LI J Z, SUN W M, SUN X H, JIANG J J, ZHUANG Z B, WANG D S, LI Y D. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction[J]. Nano Lett., 2022,22(23):9507-9515.

    18. [18]

      ZHAI W J, HUANG S H, LU C B, TANG X N, LI L B, HUANG B Y, HU T, YUAN K, ZHUANG X D, CHEN Y W. Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction[J]. Small, 2022,18(15)e2107225.

    19. [19]

      XIN C C, SHANG W Z, HU J W, ZHU C, GUO J Y, ZHANG J W, DONG H P, LIU W, SHI Y T. Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction[J]. Adv. Funct. Mater., 2021,32(2)2108345.

    20. [20]

      LIU J J, JIA J J, WEN H Y, LI S Q, WU Y J, WANG Q, KAN Z W, LI Y, WU X, ZHAO J X, LIU S, LI B. Axial optimization of biomimetic nanoenzyme catalysts applied to oxygen reduction reactions[J]. Chem. Commun., 2023,59(24)3550.

    21. [21]

      TIAN H, SONG A L, ZHANG P, SUN K A, WANG J J, SUN B, FAN Q H, SHAO G J, CHEN C, LIU H, LI Y D, WANG G X. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J]. Adv. Mater., 2023,35(14)2210714.

    22. [22]

      WU S W, JIANG S, LIU S Q, TAN X H, CHEN N, LUO J L, MUSHRIF S H, CADIEN K, LI Z. Single Cu-N4 sites enable atomic Fe clusters with high-performance oxygen reduction reactions[J]. Energy Environ. Sci., 2023,16(8):3576-3586.

    23. [23]

      HU C, XING G Y, HAN W T, HAO Y X, ZHANG C C, ZHANG Y, KUO C H, CHEN H Y, HU F, LI L L, PENG S J. Inhibiting demetalation of Fe-N-C via Mn sites for efficient oxygen reduction reaction in zinc-air batteries[J]. Adv. Mater., 2024,36(12)2405763.

    24. [24]

      XU H, SUN W Y, LI R P, LU X Y, YANG P X, BAI J. Tailoring the electronic structure of Fe-N4 sites via heteroatom modification strategy for boosting oxygen reduction in hydrogen fuel cells: A density functional theory study[J]. Int. J. Hydrogen Energy, 2024,72:220-225.

    25. [25]

      WANG D, ZHA S J, LI Y Q, LI X S, WANG J B, CHU Y, MITSUZAKI N, CHEN Z D. A carboxylate linker strategy mediated densely accessible Fe-N4 sites for enhancing oxygen electroreduction in Zn-air batteries[J]. J. Colloid Interface Sci., 2024,665:879-887.

    26. [26]

      YANG B L, YU H F, JIA X D, CHENG Q, REN Y L, HE B, XIANG Z H. Atomically dispersed isolated Fe-Ce dual-metal-site catalysts for proton-exchange membrane fuel cells[J]. ACS Appl. Mater. Interfaces, 2023,15(19):23316-23327.

    27. [27]

      HAMMER B, NØRSKOV J K. Electronic factors determining the reactivity of metal surfaces[J]. Surface Sci., 1995,343(3):211-220.

    28. [28]

      XU H, WANG D, YANG P X, LIU A M, LI R P, LI Y, XIAO L H, REN X F, ZHANG J Q, AN M Z. Atomically dispersed M-N-C catalysts for oxygen reduction reaction[J]. J. Mater. Chem. A, 2020,8(44):23187-23201.

    1. [1]

      YI X Y, YANG H J, YANG X X, LI X K, YAN C, ZHANG J H, CHEN L A, DONG J J, QIN J, ZHANG G N, WANG J J, LI W B, ZHOU Z Y, WU G, LI X F. Local single co sites at the second shell of Fe-N4 active sites to boost oxygen reduction reaction[J]. Adv. Funct. Mater., 2023,34(9)2309728.

    2. [2]

      WANG Y P, KATYAL N, TANG Y, LI H, SHIN K, LIU W Q, HE R L, XU M W, HENKELMAN G, BAO S J. One-step pyrolysis construction of bimetallic atom-cluster sites for boosting bifunctional catalytic activity in Zn-air batteries[J]. Small, 2023,20(11)2306504.

    3. [3]

      SONG X K, SONG Y J, LI X P, WU X T, WANG Z Q, SUN X H, AN M, WEI X Q, ZHAO Y J, WEI J M, BI C L, SUN J H, NARA H, YOU J M, YAMAUCHI Y. Multi-scale engineered 2D carbon polyhedron array with enhanced electrocatalytic performance[J]. Small, 2023,20(11)2305459.

    4. [4]

      SHEN M X, LIU J, LI J, DUAN C, XIONG C Y, ZHAO W, DAI L, WANG Q Y, YANG H, NI Y H. Breaking the N-limitation with N-enriched porous submicron carbon spheres anchored Fe single-atom catalyst for superior oxygen reduction reaction and Zn-air batteries[J]. Energy Storage Mater., 2023,59102790. doi: 10.1016/j.ensm.2023.102790

    5. [5]

      LU X Y, YANG P X, WAN Y B, ZHANG H L, XU H, XIAO L H, LI R P, LI Y Q, ZHANG J Q, AN M Z. Active site engineering toward atomically dispersed M-N-C catalysts for oxygen reduction reaction[J]. Coord. Chem. Rev., 2023,495215400. doi: 10.1016/j.ccr.2023.215400

    6. [6]

      LI L, LI N, XIA J W, ZHOU S L, QIAN X Y, YIN F X, DAI G H, HE G Y, CHEN H Q. A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries[J]. Nano Res., 2023,16(7):9416-9425. doi: 10.1007/s12274-023-5625-y

    7. [7]

      LIU M, WANG X M, CAO S F, LU X Q, LI W, LI N, BU X H. Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction[J]. Adv. Mater., 2024,36(19)2309231. doi: 10.1002/adma.202309231

    8. [8]

      LI Z J, JI S Q, LIU H X, XU C, GUO C M, LU X, SUN H X, DOU S, XIN S X, HORTON J H, HE C. Constructing asymmetrical coordination microenvironment with phosphorus-incorporated nitrogen-doped carbon to boost bifunctional oxygen electrocatalytic activity[J]. Adv. Funct. Mater., 2024,34(18)2314444. doi: 10.1002/adfm.202314444

    9. [9]

      CHEN C L, CHAI J, SUN M R, GUO T Q, LIN J, ZHOU Y R, SUN Z Y, ZHANG F, ZHANG L, CHEN W X, LI Y J. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction[J]. Energy Environ. Sci., 2024,17(6):2298-2308. doi: 10.1039/D4EE00134F

    10. [10]

      ZHAO C X, LIU X Y, LIU J N, WANG J, WAN X, WANG C D, LI X Y, SHUI J L, SONG L, PENG H J, LI B Q, ZHANG Q. Molecular recognition regulates coordination structure of single atom sites[J]. Angew. Chem.‒Int. Edit., 2023,62(48)202313028. doi: 10.1002/anie.202313028

    11. [11]

      YU T, CHE Y T, FU H, MA D F, ZHAO W J, YAN S T, BIAN T, ZHANG L T. N, S dual-doped carbon aerogels-supported Co9S8 nanoparticles as efficient oxygen reduction reaction electrocatalyst for zinc-air battery[J]. J. Alloy. Compd., 2023,948169792. doi: 10.1016/j.jallcom.2023.169792

    12. [12]

      LIU H, JIANG L Z, WANG Y M, WANG X X, KHAN J, ZHU Y L, XIAO J M, LI L N, HAN L. Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon[J]. Chem. Eng. J., 2023,452138938. doi: 10.1016/j.cej.2022.138938

    13. [13]

      XU S R, YIN H B, XUE D P, XIA H C, ZHAO S Y, YAN W F, MU S C, ZHANG J N. Atomically dispersed metal-nitrogen-carbon catalysts for oxygen reduction reaction[J]. Chem. J. Chinese Universities, 2022,43(5)20220028.

    14. [14]

      LIU Y R, YUAN S, SUN C T, WANG C L, LIU X J, LV Z H, LIU R, MENG Y Z, YANG W X, FENG X, WANG B. Optimizing Fe-3d electron delocalization by asymmetric Fe-Cu diatomic configurations for efficient anion exchange membrane fuel cells[J]. Adv. Energy Mater., 2023,13(46)2302719. doi: 10.1002/aenm.202302719

    15. [15]

      LIU Z H, MA F X, FAN H S, LIU Z Q, DU Y, ZHEN L, XU C Y. Formulating N-doped carbon hollow nanospheres with highly accessible through-pores to isolate Fe single-atoms for efficient oxygen reduction[J]. Small, 2023,20(6)2305700.

    16. [16]

      ZHOU Y Z, CHEN G B, WANG Q, WANG D, TAO X F, ZHANG T R, FENG X L, MüLLEN K. Fe-N-C Electrocatalysts with densely accessible Fe-N4 sites for efficient oxygen reduction reaction[J]. Adv. Funct. Mater., 2021,31(34)2102420.

    17. [17]

      ZHU P, XIONG X, WANG X L, YE C L, LI J Z, SUN W M, SUN X H, JIANG J J, ZHUANG Z B, WANG D S, LI Y D. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction[J]. Nano Lett., 2022,22(23):9507-9515.

    18. [18]

      ZHAI W J, HUANG S H, LU C B, TANG X N, LI L B, HUANG B Y, HU T, YUAN K, ZHUANG X D, CHEN Y W. Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction[J]. Small, 2022,18(15)e2107225.

    19. [19]

      XIN C C, SHANG W Z, HU J W, ZHU C, GUO J Y, ZHANG J W, DONG H P, LIU W, SHI Y T. Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction[J]. Adv. Funct. Mater., 2021,32(2)2108345.

    20. [20]

      LIU J J, JIA J J, WEN H Y, LI S Q, WU Y J, WANG Q, KAN Z W, LI Y, WU X, ZHAO J X, LIU S, LI B. Axial optimization of biomimetic nanoenzyme catalysts applied to oxygen reduction reactions[J]. Chem. Commun., 2023,59(24)3550.

    21. [21]

      TIAN H, SONG A L, ZHANG P, SUN K A, WANG J J, SUN B, FAN Q H, SHAO G J, CHEN C, LIU H, LI Y D, WANG G X. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J]. Adv. Mater., 2023,35(14)2210714.

    22. [22]

      WU S W, JIANG S, LIU S Q, TAN X H, CHEN N, LUO J L, MUSHRIF S H, CADIEN K, LI Z. Single Cu-N4 sites enable atomic Fe clusters with high-performance oxygen reduction reactions[J]. Energy Environ. Sci., 2023,16(8):3576-3586.

    23. [23]

      HU C, XING G Y, HAN W T, HAO Y X, ZHANG C C, ZHANG Y, KUO C H, CHEN H Y, HU F, LI L L, PENG S J. Inhibiting demetalation of Fe-N-C via Mn sites for efficient oxygen reduction reaction in zinc-air batteries[J]. Adv. Mater., 2024,36(12)2405763.

    24. [24]

      XU H, SUN W Y, LI R P, LU X Y, YANG P X, BAI J. Tailoring the electronic structure of Fe-N4 sites via heteroatom modification strategy for boosting oxygen reduction in hydrogen fuel cells: A density functional theory study[J]. Int. J. Hydrogen Energy, 2024,72:220-225.

    25. [25]

      WANG D, ZHA S J, LI Y Q, LI X S, WANG J B, CHU Y, MITSUZAKI N, CHEN Z D. A carboxylate linker strategy mediated densely accessible Fe-N4 sites for enhancing oxygen electroreduction in Zn-air batteries[J]. J. Colloid Interface Sci., 2024,665:879-887.

    26. [26]

      YANG B L, YU H F, JIA X D, CHENG Q, REN Y L, HE B, XIANG Z H. Atomically dispersed isolated Fe-Ce dual-metal-site catalysts for proton-exchange membrane fuel cells[J]. ACS Appl. Mater. Interfaces, 2023,15(19):23316-23327.

    27. [27]

      HAMMER B, NØRSKOV J K. Electronic factors determining the reactivity of metal surfaces[J]. Surface Sci., 1995,343(3):211-220.

    28. [28]

      XU H, WANG D, YANG P X, LIU A M, LI R P, LI Y, XIAO L H, REN X F, ZHANG J Q, AN M Z. Atomically dispersed M-N-C catalysts for oxygen reduction reaction[J]. J. Mater. Chem. A, 2020,8(44):23187-23201.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    13. [13]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(49)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return