Citation: Hao XU, Ruopeng LI, Peixia YANG, Anmin LIU, Jie BAI. Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302 shu

Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study

  • Corresponding author: Hao XU, xuhao@imut.edu.cn
  • Received Date: 30 December 2024
    Revised Date: 18 February 2025

Figures(6)

  • A series of halogen axial coordination atoms-modified Fe-N4 (Fe atoms coordinated with four N atoms on the same horizontal plane to form bonds) models (Fe-N4-F/C, Fe-N4-Cl/C, and Fe-N4-Br/C) were constructed based on the density functional theory. All density functional theory (DFT) calculations were carried out using the Dmol3 code in the Materials Studio package. By calculating the partial density of states, Mulliken charge, adsorption energy of intermediates, and free energy of oxygen reduction reaction (ORR), the regulation mechanism of halogen axial coordination atoms on the electronic structure and adsorption behavior of Fe atoms was studied. The structure-activity relationship between halogen axial coordination atoms and the catalytic activity of the Fe-N4 site was also investigated. The results of calculations reveal that the introduction of Br as the halogen axial coordination atoms can optimize the electronic structure of the Fe atom, thus weakening the bonding strength of OH* intermediates on the Fe center. As a result, the Fe-N4-Br/C possesses a lower energy barrier of the rate-determining step (desorption of OH* intermediates) compared to Fe-N4/C, indicating better ORR kinetics process and intrinsic activity of the Fe-N4-Br/C. Therefore, it is speculated that the introduction of halogen axial coordination atoms can improve the catalytic activity of Fe-N4 sites for ORR.
  • 加载中
    1. [1]

      YI X Y, YANG H J, YANG X X, LI X K, YAN C, ZHANG J H, CHEN L A, DONG J J, QIN J, ZHANG G N, WANG J J, LI W B, ZHOU Z Y, WU G, LI X F. Local single co sites at the second shell of Fe-N4 active sites to boost oxygen reduction reaction[J]. Adv. Funct. Mater., 2023,34(9)2309728.

    2. [2]

      WANG Y P, KATYAL N, TANG Y, LI H, SHIN K, LIU W Q, HE R L, XU M W, HENKELMAN G, BAO S J. One-step pyrolysis construction of bimetallic atom-cluster sites for boosting bifunctional catalytic activity in Zn-air batteries[J]. Small, 2023,20(11)2306504.

    3. [3]

      SONG X K, SONG Y J, LI X P, WU X T, WANG Z Q, SUN X H, AN M, WEI X Q, ZHAO Y J, WEI J M, BI C L, SUN J H, NARA H, YOU J M, YAMAUCHI Y. Multi-scale engineered 2D carbon polyhedron array with enhanced electrocatalytic performance[J]. Small, 2023,20(11)2305459.

    4. [4]

      SHEN M X, LIU J, LI J, DUAN C, XIONG C Y, ZHAO W, DAI L, WANG Q Y, YANG H, NI Y H. Breaking the N-limitation with N-enriched porous submicron carbon spheres anchored Fe single-atom catalyst for superior oxygen reduction reaction and Zn-air batteries[J]. Energy Storage Mater., 2023,59102790. doi: 10.1016/j.ensm.2023.102790

    5. [5]

      LU X Y, YANG P X, WAN Y B, ZHANG H L, XU H, XIAO L H, LI R P, LI Y Q, ZHANG J Q, AN M Z. Active site engineering toward atomically dispersed M-N-C catalysts for oxygen reduction reaction[J]. Coord. Chem. Rev., 2023,495215400. doi: 10.1016/j.ccr.2023.215400

    6. [6]

      LI L, LI N, XIA J W, ZHOU S L, QIAN X Y, YIN F X, DAI G H, HE G Y, CHEN H Q. A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries[J]. Nano Res., 2023,16(7):9416-9425. doi: 10.1007/s12274-023-5625-y

    7. [7]

      LIU M, WANG X M, CAO S F, LU X Q, LI W, LI N, BU X H. Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction[J]. Adv. Mater., 2024,36(19)2309231. doi: 10.1002/adma.202309231

    8. [8]

      LI Z J, JI S Q, LIU H X, XU C, GUO C M, LU X, SUN H X, DOU S, XIN S X, HORTON J H, HE C. Constructing asymmetrical coordination microenvironment with phosphorus-incorporated nitrogen-doped carbon to boost bifunctional oxygen electrocatalytic activity[J]. Adv. Funct. Mater., 2024,34(18)2314444. doi: 10.1002/adfm.202314444

    9. [9]

      CHEN C L, CHAI J, SUN M R, GUO T Q, LIN J, ZHOU Y R, SUN Z Y, ZHANG F, ZHANG L, CHEN W X, LI Y J. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction[J]. Energy Environ. Sci., 2024,17(6):2298-2308. doi: 10.1039/D4EE00134F

    10. [10]

      ZHAO C X, LIU X Y, LIU J N, WANG J, WAN X, WANG C D, LI X Y, SHUI J L, SONG L, PENG H J, LI B Q, ZHANG Q. Molecular recognition regulates coordination structure of single atom sites[J]. Angew. Chem.‒Int. Edit., 2023,62(48)202313028. doi: 10.1002/anie.202313028

    11. [11]

      YU T, CHE Y T, FU H, MA D F, ZHAO W J, YAN S T, BIAN T, ZHANG L T. N, S dual-doped carbon aerogels-supported Co9S8 nanoparticles as efficient oxygen reduction reaction electrocatalyst for zinc-air battery[J]. J. Alloy. Compd., 2023,948169792. doi: 10.1016/j.jallcom.2023.169792

    12. [12]

      LIU H, JIANG L Z, WANG Y M, WANG X X, KHAN J, ZHU Y L, XIAO J M, LI L N, HAN L. Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon[J]. Chem. Eng. J., 2023,452138938. doi: 10.1016/j.cej.2022.138938

    13. [13]

      XU S R, YIN H B, XUE D P, XIA H C, ZHAO S Y, YAN W F, MU S C, ZHANG J N. Atomically dispersed metal-nitrogen-carbon catalysts for oxygen reduction reaction[J]. Chem. J. Chinese Universities, 2022,43(5)20220028.

    14. [14]

      LIU Y R, YUAN S, SUN C T, WANG C L, LIU X J, LV Z H, LIU R, MENG Y Z, YANG W X, FENG X, WANG B. Optimizing Fe-3d electron delocalization by asymmetric Fe-Cu diatomic configurations for efficient anion exchange membrane fuel cells[J]. Adv. Energy Mater., 2023,13(46)2302719. doi: 10.1002/aenm.202302719

    15. [15]

      LIU Z H, MA F X, FAN H S, LIU Z Q, DU Y, ZHEN L, XU C Y. Formulating N-doped carbon hollow nanospheres with highly accessible through-pores to isolate Fe single-atoms for efficient oxygen reduction[J]. Small, 2023,20(6)2305700.

    16. [16]

      ZHOU Y Z, CHEN G B, WANG Q, WANG D, TAO X F, ZHANG T R, FENG X L, MüLLEN K. Fe-N-C Electrocatalysts with densely accessible Fe-N4 sites for efficient oxygen reduction reaction[J]. Adv. Funct. Mater., 2021,31(34)2102420.

    17. [17]

      ZHU P, XIONG X, WANG X L, YE C L, LI J Z, SUN W M, SUN X H, JIANG J J, ZHUANG Z B, WANG D S, LI Y D. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction[J]. Nano Lett., 2022,22(23):9507-9515.

    18. [18]

      ZHAI W J, HUANG S H, LU C B, TANG X N, LI L B, HUANG B Y, HU T, YUAN K, ZHUANG X D, CHEN Y W. Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction[J]. Small, 2022,18(15)e2107225.

    19. [19]

      XIN C C, SHANG W Z, HU J W, ZHU C, GUO J Y, ZHANG J W, DONG H P, LIU W, SHI Y T. Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction[J]. Adv. Funct. Mater., 2021,32(2)2108345.

    20. [20]

      LIU J J, JIA J J, WEN H Y, LI S Q, WU Y J, WANG Q, KAN Z W, LI Y, WU X, ZHAO J X, LIU S, LI B. Axial optimization of biomimetic nanoenzyme catalysts applied to oxygen reduction reactions[J]. Chem. Commun., 2023,59(24)3550.

    21. [21]

      TIAN H, SONG A L, ZHANG P, SUN K A, WANG J J, SUN B, FAN Q H, SHAO G J, CHEN C, LIU H, LI Y D, WANG G X. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J]. Adv. Mater., 2023,35(14)2210714.

    22. [22]

      WU S W, JIANG S, LIU S Q, TAN X H, CHEN N, LUO J L, MUSHRIF S H, CADIEN K, LI Z. Single Cu-N4 sites enable atomic Fe clusters with high-performance oxygen reduction reactions[J]. Energy Environ. Sci., 2023,16(8):3576-3586.

    23. [23]

      HU C, XING G Y, HAN W T, HAO Y X, ZHANG C C, ZHANG Y, KUO C H, CHEN H Y, HU F, LI L L, PENG S J. Inhibiting demetalation of Fe-N-C via Mn sites for efficient oxygen reduction reaction in zinc-air batteries[J]. Adv. Mater., 2024,36(12)2405763.

    24. [24]

      XU H, SUN W Y, LI R P, LU X Y, YANG P X, BAI J. Tailoring the electronic structure of Fe-N4 sites via heteroatom modification strategy for boosting oxygen reduction in hydrogen fuel cells: A density functional theory study[J]. Int. J. Hydrogen Energy, 2024,72:220-225.

    25. [25]

      WANG D, ZHA S J, LI Y Q, LI X S, WANG J B, CHU Y, MITSUZAKI N, CHEN Z D. A carboxylate linker strategy mediated densely accessible Fe-N4 sites for enhancing oxygen electroreduction in Zn-air batteries[J]. J. Colloid Interface Sci., 2024,665:879-887.

    26. [26]

      YANG B L, YU H F, JIA X D, CHENG Q, REN Y L, HE B, XIANG Z H. Atomically dispersed isolated Fe-Ce dual-metal-site catalysts for proton-exchange membrane fuel cells[J]. ACS Appl. Mater. Interfaces, 2023,15(19):23316-23327.

    27. [27]

      HAMMER B, NØRSKOV J K. Electronic factors determining the reactivity of metal surfaces[J]. Surface Sci., 1995,343(3):211-220.

    28. [28]

      XU H, WANG D, YANG P X, LIU A M, LI R P, LI Y, XIAO L H, REN X F, ZHANG J Q, AN M Z. Atomically dispersed M-N-C catalysts for oxygen reduction reaction[J]. J. Mater. Chem. A, 2020,8(44):23187-23201.

  • 加载中
    1. [1]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    15. [15]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    16. [16]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    18. [18]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    19. [19]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    20. [20]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(5)
  • Abstract views(848)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return