Citation: Fugui XI, Du LI, Zhourui YAN, Hui WANG, Junyu XIANG, Zhiyun DONG. Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291 shu

Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water

  • Corresponding author: Fugui XI, xifugui@163.com
  • Received Date: 31 July 2024
    Revised Date: 20 December 2024

Figures(15)

  • In this study, UiO-66-CHO and UiO-66-CH=C(CN)2 were synthesized using pre-synthetic and postsynthetic modification methods, for the adsorption of tetracycline (TC) from aqueous solution. The powder X-ray diffraction patterns of these functional MOFs exhibit that they have the same frameworks with UiO-66 and good crystallinity. FTIR and 1H NMR spectroscopy powerfully suggested that the formyl and the cyano were successfully introduced to the frameworks. Compared to UiO-66, UiO-66-CHO and UiO-66-CH=C(CN)2 exhibit slightly diminished thermal stability in the thermogravimetric analysis and the absence of organic linkers. The Brunauer-Emmett-Teller (BET) specific surface area calculated from the N2 adsorption and desorption experiment data shows that all modified materials also preserve porousness. The three materials in the scanning electron microscope showed similar morphology at the microscopic level, and uniform particle size may be favorable for TC adsorption. A series of experiments were conducted on UiO-66-CHO and UiO-66-CH=C(CN)2 for the adsorption of TC in water. For the two functional MOFs, adsorption experiment data confirmed that the adsorption occurs via chemisorption on a monolayer, aligning with the pseudo-second-order kinetic and Langmuir isotherm models. UiO-66-CHO and UiO-66-CH=C (CN)2 exhibited a higher theoretical maximum adsorption capacity of 199.28 and 62.61 mg·g-1 at pH 9.0 than UiO-66 and shorter adsorption equilibrium time of about 150 min. Thermodynamic experiments have shown that the uptake of TC is both endothermic and spontaneous, leading to an increased disorder at the solid-solution interface. It is worth noting that UiO-66-CHO could preserve the 75% removal efficiency in the fifth adsorption cycle.
  • 加载中
    1. [1]

      LEICHTWEIS J, VIEIRA Y, WELTER N, SILVESTRI S, DOTTO G L, CARISSIMI E. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic[J]. Process Saf. Environ. Protect., 2022,160:25-40. doi: 10.1016/j.psep.2022.01.085

    2. [2]

      BAVUMIRAGIRA J P, GE J B, YIN H L. Fate and transport of pharmaceuticals in water systems: A processes review[J]. Sci. Total Environ., 2022,823153635.

    3. [3]

      ELDER F C T, PROCTOR K, BARDEN R, GAZE W H, SNAPE J, Feil E J, HORDERN B K. Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment[J]. Water Res., 2021,203117533.

    4. [4]

      WANG J L, ZHUAN R, CHU L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview[J]. Sci. Total Environ., 2019,646:1385-1397. doi: 10.1016/j.scitotenv.2018.07.415

    5. [5]

      DU X, YANG W P, LIU Y, ZHANG W X, WANG Z H, NIE J X, LI G B, LIANG H. Removal of manganese, ferrous and antibiotics from groundwater simultaneously using peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process[J]. Sep. Purif. Technol., 2020,252117492. doi: 10.1016/j.seppur.2020.117492

    6. [6]

      ZHANG X Q, DONG Q, WANG Y P, ZHE Z, GUO Z F, LI J C, LV Y, CHOW Y T, WANG X Q, ZHU L Y, ZHANG G H, XU D. Water-stable metal-organic framework (UiO-66) supported on zirconia nanofibers membrane for the dynamic removal of tetracycline and arsenic from water[J]. Appl. Surf. Sci., 2022,596153559.

    7. [7]

      QIU C L, SUN H Y, NI Y Y, DOU Z J, XIA M, FEI Z Y, ZHANG Z X, CUI M F, LIU Q, QIAO X. Removal of tetracycline by La(OH)3 modified MIL-101(Cr) adsorbent with multiple adsorption sites[J]. Mater. Today Commun., 2024,40109613.

    8. [8]

      BIN A K, SOBERA-MADEJ S. Comparison of the advanced oxidation processes (UV, UV/H2O2 and O3) for the removal of antibiotic substances during waste water treatment[J]. Ozone‒Sci. Eng., 2012,34(2):136-139. doi: 10.1080/01919512.2012.650130

    9. [9]

      ZHU Y K, JIANG X J, CHEN J Y, FU X H, WU L G, WANG T. Mechanism and pathways for degrading tetracycline via photocatalytic synergistic peroxysulfate-activated catalytic oxidation[J]. Chinese J. Inorg. Chem., 2023,39(10):1857-1868. doi: 10.11862/CJIC.2023.164

    10. [10]

      GONZALEZ T, DONMINGUEZ J R, PALO P, SANCHEZ-MARTIN J, CUERDA-CORREA E M. Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution[J]. Desalination, 2011,280(1/2/3):197-202.

    11. [11]

      LIU Y S, NIE P, YU F C. Enhanced adsorption of sulfonamides by a novel carboxymethyl cellulose and chitosan-based composite with sulfonated grapheneoxide[J]. Bioresource. Technol., 2021,320(Pt B)124373.

    12. [12]

      JEONG C, ANSARI Z, ANWER A H, KIM S H, NASAR A, SHOEB M, MASHKOOR F. A review on metal-organic frameworks for the removal of hazardous environmental contaminants[J]. Sep. Purif. Technol., 2022,305122416.

    13. [13]

      LEE G, AHMED I, LEE H J, JHUNG S H. Adsorptive removal of organic pollutants with a specific functional group from water by using metal-organic frameworks (MOFs) or MOF-derived carbons: A review[J]. Sep. Purif. Technol., 2024,347127602. doi: 10.1016/j.seppur.2024.127602

    14. [14]

      AMENAGHAWON A N, ANYALEWECHI C L, OSAZUWA O U, ELIMIAN E A, ESHIEMOGIE S O, OYEFOLU P K, KUSUMA H S. A comprehensive review of recent advances in the synthesis and application of metal-organic frameworks (MOFs) for the adsorptive sequestration of pollutants from wastewater[J]. Sep. Purif. Technol., 2023,311123246. doi: 10.1016/j.seppur.2023.123246

    15. [15]

      WANG F X, WANG C C, WANG P, XING B C. Syntheses and Applications of UiO Series of MOFs[J]. Chinese J. Inorg. Chem., 2017,33(5):713-737. doi: 10.11862/CJIC.2017.105

    16. [16]

      LI Y H, WANG C C, YI X H, CHU H Y. UiO-66(Zr)-based functional materials for water purification: An updated review[J]. Environ. Funct. Mater., 2023,2(2):93-132.

    17. [17]

      KADHOM M, AL‑FURAIJI M, SALIH S, AL‑OBAIDI M A, ABDULLAH G H, ALBAYATI N. A review on UiO-66 applications in membrane-based water treatment processes[J]. J. Water Process Eng., 2023,51103402. doi: 10.1016/j.jwpe.2022.103402

    18. [18]

      AHMADIJOKANI F, MOLAV H, REZAKAZEMI M, TAJAHMADI S, BAHI A, KO F, AMINABHAVI T M, LIJ R, ARHMANGD M. UiO-66 metal-organic frameworks in water treatment: A critical review[J]. Prog. Mater. Sci., 2022,125100904. doi: 10.1016/j.pmatsci.2021.100904

    19. [19]

      DU X D, WANG C C, LIU J G, ZHAO X D, ZHONG J, LIY X, LI J, WANG P. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism[J]. J. Colloid Interface Sci., 2017,506(C):437-441.

    20. [20]

      CHEN C Q, CHEN D Z, XIE S S, QUAN H Y, LUO X B, GUO L. Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66:Analysis of surface interactions[J]. ACS Appl. Mater. Interfaces, 2017,9:41043-41054. doi: 10.1021/acsami.7b13443

    21. [21]

      KIM H G, CHOI K, LEE K, LEE S, JUNG K W, CHOI J W. Controlling the structural robustness of zirconium-based metal organic frameworks for efficient adsorption on tetracycline antibiotics[J]. Water, 2021,131869. doi: 10.3390/w13131869

    22. [22]

      SUN Y Z, CHEN M, LIU H, ZHU Y, WANG D B, YAN M. Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial UiO-66-(OH)2/GO[J]. Appl. Surf. Sci., 2020,520146614.

    23. [23]

      WANG K N, WU J J, ZHU M L, ZHENG Y Z, TAO X. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal-organic framework composites[J]. J. Solid State Chem., 2020,284121200.

    24. [24]

      MICHAEL J K, ZACHARY J B, YAMIL J C, PAUL W S, KARL A S, RANDALL Q S, JOSEPH T H, OMAR K F. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chem. Commun., 2013,49:9449-9451.

    25. [25]

      DONG Z Y, ZHANG N, WEI X N, LI Y, LIU C Q, ZHAO S H, XI F G. Facile fabrication formyl-tagged Zr-MOF and functionalized for Fe3+ fluorescence detection[J]. Mater. Lett., 2022,317132117.

    26. [26]

      XIA J, GAO Y X, YU G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies[J]. J. Colloid Interface Sci., 2021,590:495-505. doi: 10.1016/j.jcis.2021.01.046

    27. [27]

      DWIGHT S J, LEVIN S. Scalable regioselective synthesis of rhodamine dyes[J]. Org. Lett., 2016,18:5316-5319.

    28. [28]

      YANG Z H, CAO J, CHEN Y P, LI X, XIONG W P, ZHOU Y Y, ZHOU C Y, XU R, ZHANG Y R. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr􀃱 from aqueous solution[J]. Microporous Mesoporous Mat., 2019,277:277-285.

    29. [29]

      ZUO T Y, ZHANG L, WANG H Y, DING W X. Hydrophobic metal-organic framework material based on fluorosilane-modified UiO-66-OH: Preparation and application in the conservation of limestone cultural relics[J]. Chinese J. Inorg. Chem., 2023,39(9):1817-1831. doi: 10.11862/CJIC.2023.142

    30. [30]

      LIU Z, GU J H, LI N N, LIU Z S, LIU B, LI Y X. Rapid room-temperature synthesis and tetracycline adsorption of novel ga-based metal-organic gels[J]. Chem. J. Chinese Universities, 2024,45(5)20230485.

    31. [31]

      HE T, WANG Y, HAN R, LI X D, CUI S H, YANG J. Hierarchical porous UiO-66 composites modified by dual competitive strategy for adsorption of oxytetracycline[J]. J. Environ. Chem. Eng., 2024,12111662.

    32. [32]

      YANG C, CHEN X H, WANG H, CHENG Y, HU B B. Bimetal doping of UiO-66 and its characteristics for tetracycline adsorption[J]. China Water & Wastewater, 2023,39(21):78-85.

    33. [33]

      DU H W, SONG X, CHEN X, JIN P Y, CHEN W Q. Study on the adsorption properties of Fe-doped UiO-66 for tetracycline hydrochlorid[J]. New Chemical Materials, 2023,51(10):197-202.

    34. [34]

      XIONG W P, ZENG G M, YANG Z H, ZHOU Y Y, ZHANG C, CHENG M, LIU Y, HU L, WAN J, ZHOU C Y, XU R, LI X. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent[J]. Sci. Total Environ., 2018,627:235-244.

    35. [35]

      ZHONG J, YUAN X, XIONG J, WU X L, LOU W Y. Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption of tetracycline[J]. Environ. Res., 2023,226115633.

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(0)
  • Abstract views(42)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return