Process of electrocatalytic synthesis of small molecule substances by porous framework materials
- Corresponding author: Zongjie GUAN, zjguan@hnu.edu.cn Yu FANG, yu.fang@hnu.edu.cn
Citation: Zhifang SU, Zongjie GUAN, Yu FANG. Process of electrocatalytic synthesis of small molecule substances by porous framework materials[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Liu K K, Meng Z, Fang Y, Jiang H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023100133.
Li C, Zhang H, Liu M, Lang F F, Pang J D, Bu X H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis[J]. Ind. Chem. Mater., 2023,1(1):9-38. doi: 10.1039/D2IM00063F
Li Z M, Zhang C Q, Liu C, Zhang H W, Song H, Zhang Z Q, Wei G F, Bao X J, Yu C, Yuan P. High-efficiency electroreduction of O2 into H2O2 over ZnCo bimetallic triazole frameworks promoted by ligand activation[J]. Angew. Chem. Int. Ed., 2024,63(2)e202314266. doi: 10.1002/anie.202314266
Chen X L, Kuwahara Y, Mori K, Louis C, Yamashita H. Heterometallic and hydrophobic metal-organic frameworks as durable photocatalysts for boosting hydrogen peroxide production in a two-phase system[J]. ACS Appl. Energ. Mater., 2021,4(5):4823-4830. doi: 10.1021/acsaem.1c00371
Chen D, Chen W B, Wu Y T, Wang L, Wu X J, Xu H X, Chen L. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production[J]. Angew. Chem. Int. Ed., 2022,62(9)e202217479.
Xu Y Q, Guan Z J, Liu K K, Ke M, Zhu L, Fang Y. Remote tuning of secondary metal binding site assisted reconstruction of porous coordination cages for boosting overall water-splitting[J]. Chem. Eng. J., 2024,483149065. doi: 10.1016/j.cej.2024.149065
Yang Y, Huang J L, Zou Y B, Li Y B, Zhan T T, Huang L M, Ma X L, Zhang Z J, Xiang S C. N, O-coordinated Zn-MOFs for selective conversion of CO2 to formate[J]. Appl. Surf. Sci., 2023,618156664. doi: 10.1016/j.apsusc.2023.156664
Smith P T, Benke B P, Cao Z, Kim Y, Nichols E M, Kim K, Chang C J. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water[J]. Angew. Chem. Int. Ed., 2018,57(31):9684-9688. doi: 10.1002/anie.201803873
Banerjee S, Gorham J M, Beccar-Varela P, Hackbarth H G, Siegler M A, Drichko N, Wright J T, Bedford N M, Thoi V S. Atomically dispersed CuNx sites from thermal activation of boron imidazolate cages for electrocatalytic methane generation[J]. ACS Appl. Energ. Mater., 2023,6(18):9044-9056. doi: 10.1021/acsaem.2c01174
Lv Y, Ke S W, Gu Y, Tian B, Tang L, Ran P, Zhao Y, Ma J, Zuo J L, Ding M. Highly efficient electrochemical nitrate reduction to ammonia in strong acid conditions with Fe2M-trinuclear-cluster metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2023,52(27)e202305246.
Lv Y, Su J, Gu Y M, Tian B L, Ma J, Zuo J L, Ding M N. Atomically precise integration of multiple functional motifs in catalytic metal-organic frameworks for highly efficient nitrate electroreduction[J]. JACS Au, 2022,2(12):2765-2777. doi: 10.1021/jacsau.2c00502
An L, Narouz M R, Smith P T, De La Torre P, Chang C J. Supramolecular enhancement of electrochemical nitrate reduction catalyzed by cobalt porphyrin organic cages for ammonia electrosynthesis in water[J]. Angew. Chem. Int. Ed., 2023,62(35)e202305719. doi: 10.1002/anie.202305719
Peng X Y, Zeng L B, Wang D S, Liu Z B, Li Y, Li Z J, Yang B, Lei L C, Dai L M, Hou Y. Electrochemical C-N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds[J]. Chem. Soc. Rev., 2023,52(6):2193-2237. doi: 10.1039/D2CS00381C
Gerke C S, Xu Y T, Yang Y W, Foley G D, Zhang B A, Shi E T, Bedford N M, Che F L, Thoi V S. Electrochemical C—N bond formation within boron imidazolate cages featuring single copper sites[J]. J. Am. Chem. Soc., 2023,145(48):26144-26151. doi: 10.1021/jacs.3c08359
Sun L Z, Liu B. Mesoporous PdN alloy nanocubes for efficient electrochemical nitrate reduction to ammonia[J]. Adv. Mater., 2023,35(1)2207305. doi: 10.1002/adma.202207305
Xie M H, Tang S S, Li Z, Wang M Y, Jin Z Y, Li P P, Zhan X, Zhou H, Yu G H. Intermetallic single-atom alloy In-Pd bimetallene for neutral electrosynthesis of ammonia from nitrate[J]. J. Am. Chem. Soc., 2023,145(25):13957-13967. doi: 10.1021/jacs.3c03432
Liu H M, Timoshenko J, Bai L C, Li Q Y, Rüscher M, Sun C H, Cuenya B R, Luo J S. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia[J]. ACS Catal., 2023,13(2):1513-1521. doi: 10.1021/acscatal.2c03004
Pi Y C, Qiu Z M, Sun Y, Ishii H, Liao Y F, Zhang X Y, Chen H Y, Pang H. Synergistic mechanism of sub-nanometric Ru clusters anchored on tungsten oxide nanowires for high-efficient bifunctional hydrogen electrocatalysis[J]. Adv. Sci., 2023,10(7)2206096. doi: 10.1002/advs.202206096
Yuan J P, Guan Z J, Lin H Y, Yan B, Liu K K, Zhou H C, Fang Y. Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution[J]. Angew. Chem. Int. Ed., 2023,62(31)e202303896. doi: 10.1002/anie.202303896
He H H, Yuan J P, Cai P Y, Wang K Y, Feng L, Kirchon A, Li J, Zhang L L, Zhou H C, Fang Y. Yolk-shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions[J]. J. Am. Chem. Soc., 2023,145(31):17164-17175. doi: 10.1021/jacs.3c03883
Zhou X, Ma L L, Yu L, Zhou K, Xiong K C, Gai Y L, Li J, Wang H. Size-exclusion separation of hexane isomers by a Y-MOF built on {Y(COO)3}n chains[J]. ACS Mater. Lett., 2024,6(3):928-932. doi: 10.1021/acsmaterialslett.4c00113
Zhou L, Brântuas P, Henrique A, Reinsch H, Wahiduzzaman M, Grenèche J M, Rodrigues A E, Silva J A C, Maurin G, Serre C. A microporous multi-cage metal-organic framework for an effective one-step separation of branched alkanes feeds[J]. Angew. Chem. Int. Ed., 2024,63(15)e202320008. doi: 10.1002/anie.202320008
Liu K K, Guan Z J, Ke M, Fang Y. Bridging the gap between charge storage site and transportation pathway in molecular-cage-based flexible electrodes[J]. ACS Central Sci., 2023,9(4):805-815. doi: 10.1021/acscentsci.3c00027
Geng P B, Wang L, Du M, Bai Y, Li W T, Liu Y F, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li-S batteries: shape or size?[J]. Adv. Mater., 2022,43(4)2107836.
Chen T T, Wang F F, Cao S, Bai Y, Zheng S S, Li W T, Zhang S T, Hu S X, Pang H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Adv. Mater., 2022,342201779. doi: 10.1002/adma.202201779
Zhao Y Y, Yuan J P, Zhu L, Fang Y. Photocatalytic synthesis of small-molecule drugs by porous framework materials[J]. Chin. Chem. Lett., 2024,35(3)109065. doi: 10.1016/j.cclet.2023.109065
Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995,378(6558):703-706. doi: 10.1038/378703a0
Mohan B, Kumari R, Virender , Singh G, Singh K, Pombeiro A J L, Yang X M, Ren P. Covalent organic frameworks (COFs) and metalorganic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues[J]. Environ. Int., 2023,175107928. doi: 10.1016/j.envint.2023.107928
Niu Q, Mi L H, Chen W, Li Q J, Zhong S H, Yu Y, Li L Y. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis[J]. Chin. J. Catal., 2023,50:45-82. doi: 10.1016/S1872-2067(23)64457-2
Li J, Jing X C, Li Q Q, Li S W, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chem. Soc. Rev., 2020,49(11):3565-3604. doi: 10.1039/D0CS00017E
Hu H Y, Miao R Y, Yang F L, Duan F, Zhu H, Hu Y M, Du M L, Lu S L. Intrinsic activity of metalized porphyrin-based covalent organic frameworks for electrocatalytic nitrate reduction[J]. Adv. Energy Mater., 2023,14(6)2302608.
Huang N, Chen X, Krishna R, Jiang D L. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angew. Chem. Int. Ed., 2015,54(10):2986-2990. doi: 10.1002/anie.201411262
Liu M, Liao W P, Hu C H, Du S C, Zhang H J. Calixarenebased nanoscale coordination cages[J]. Angew. Chem. Int. Ed., 2012,51(7):1585-1588. doi: 10.1002/anie.201106732
Liang Y, Li E R, Wang K Y, Guan Z J, He H H, Zhang L L, Zhou H C, Huang F H, Fang Y. Organo-macrocycle-containing hierarchical metal-organic frameworks and cages: Design, structures, and applications[J]. Chem. Soc. Rev., 2022,51(19):8378-8405. doi: 10.1039/D2CS00232A
Fang Y, Zhou H C. Metal nanoparticles encapsulated within charge tunable porous coordination cages for hydrogen generation reaction[J]. Catal. Today, 2021,374:12-19. doi: 10.1016/j.cattod.2020.10.030
Fang Y, Xiao Z F, Li J L, Lollar C, Liu L J, Lian X Z, Yuan S, Banerjee S, Zhang P, Zhou H C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage[J]. Angew. Chem. Int. Ed., 2018,57(19):5283-5287. doi: 10.1002/anie.201712372
Liang C J, Yuan J P, Zhu C F, Fang Y. Surface charges of porous coordination cage tune the catalytic reactivity of Knoevenagel condensation[J]. Catal. Today, 2022,400/401:89-94. doi: 10.1016/j.cattod.2021.11.008
Li S S, Gao Y Q, Li N, Ge L, Bu X H, Feng P Y. Transition metalbased bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction[J]. Energy Environ. Sci., 2021,14(4)18971927.
Gunaseelan H, Munde A V, Patel R, Sathe B R. Metal-organic framework derived carbon based electrocatalysis for hydrogen evolution reactions: A review[J]. Mater. Today Sustain., 2023,22100371.
Du J, Li F, Sun L C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chem. Soc. Rev., 2021,50(4):2663-2695. doi: 10.1039/D0CS01191F
Iqbal B, Laybourn A, O'Shea J N, Argent S P, Zaheer M. Electrocatalytic hydrogen evolution over micro and mesoporous cobalt metal organic frameworks[J]. Mol. Catal., 2022,531112711. doi: 10.1016/j.mcat.2022.112711
Geng B, Yan F, Zhang X, He Y Q, Zhu C L, Chou S L, Zhang X L, Chen Y J. Conductive CuCo based bimetal organic framework for efficient hydrogen evolution[J]. Adv. Mater., 2021,33(49)2106781. doi: 10.1002/adma.202106781
Zhang R Z, Lu L L, Chen Z H, Zhang X, Wu B Y, Shi W, Cheng P. Bimetallic cage-based metal-organic frameworks for electrochemical hydrogen evolution reaction with enhanced activity[J]. Chem.-Eur. J., 2022,28(28)e202200401. doi: 10.1002/chem.202200401
Hu F, Yu D S, Zeng W J, Lin Z Y, Han S L, Sun Y J, Wang H, Ren J W, Hung S F, Li L L, Peng S J. Active site tailoring of metal-organic frameworks for highly efficient oxygen evolution[J]. Adv. Energy Mater., 2023,13(29)2301224. doi: 10.1002/aenm.202301224
Jiang Y J, Chen T Y, Chen J L, Liu Y, Yuan X L, Yan J C, Sun Q, Xu Z C, Zhang D L, Wang X, Meng C G, Guo X W, Ren L M, Liu L M, Lin R Y Y. Heterostructured bimetallic MOF-on-MOF architectures for efficient oxygen evolution reaction[J]. Adv. Mater., 2024,36(8)2306910. doi: 10.1002/adma.202306910
Ding J T, Guo D Y, Wang N S, Wang H F, Yang X F, Shen K, Chen L Y, Li Y W. Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2023,135(43)e202311909. doi: 10.1002/ange.202311909
Zhang C Q, Yuan L, Liu C, Li Z M, Zou Y Y, Zhang X C, Zhang Y, Zhang Z Q, Wei G F, Yu C Z. Crystal engineering enables cobaltbased metal organic frameworks as high performance electrocatalysts for H2O2 production[J]. J. Am. Chem. Soc., 2023,145(14)77917799.
Yang X B, An Q Z, Li X W, Fu Y B, Yang S, Liu M H, Xu Q, Zeng G F. Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction[J]. Nat. Commun., 2024,15(1)1889. doi: 10.1038/s41467-024-46291-y
Wang Q, Wang C, Zheng K P, Wang B B, Wang Z, Zhang C H, Long X J. Positional thiophene isomerization: A geometric strategy for precisely regulating the electronic state of covalent organic frameworks to boost oxygen reduction[J]. Angew. Chem. Int. Ed., 2024,63(15)e202320037. doi: 10.1002/anie.202320037
Yu Y, Li Y, Fang Y, Wen L L, Tu B B, Huang Y. Recent advances of ammonia synthesis under ambient conditions over metal organic framework based electrocatalysts[J]. Appl. Catal. B-Environ., 2024,340123161. doi: 10.1016/j.apcatb.2023.123161
Liao P S, Kang J W, Xiang R A, Wang S H, Li G Q. Electrocatalytic systems for NOx valorization in organonitrogen synthesis[J]. Angew. Chem. Int. Ed., 2023,63(3)e202311752.
Wen X D, Guan J D. Recent advancement in the electrocatalytic synthesis of ammonia[J]. Nanoscale, 2020,12(15):8065-8094. doi: 10.1039/D0NR01359E
Xiong Y C, Wang Y H, Zhou J W, Liu F, Hao F K, Fan Z X. Electrochemical nitrate reduction: Ammonia synthesis and the beyond[J]. Adv. Mater., 2024,36(17)2304021. doi: 10.1002/adma.202304021
Zhao X R, Yin F X, Liu N, Li G R, Fan T X, Chen B H. Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2(air) and water at low temperature and ambient pressure[J]. J. Mater. Sci., 2017,52(17):10175-10185. doi: 10.1007/s10853-017-1176-5
Duan J J, Sun Y T, Chen S, Chen X J, Zhao C. A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation[J]. J. Mater. Chem. A, 2020,8(36):18810-18815. doi: 10.1039/D0TA05010E
Jiang M H, Han L K, Peng P, Hu Y, Xiong Y, Mi C X, Tie Z X, Xiang Z H, Jin Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis[J]. Nano Lett., 2022,22(1):372-379. doi: 10.1021/acs.nanolett.1c04009
Feng D M, Zhou L X, White T J, Cheetham A K, Ma T Y, Wei F X. Nanoengineering metal-organic frameworks and derivatives for electrosynthesis of ammonia[J]. Nano-Micro Lett., 2023,15(1)203. doi: 10.1007/s40820-023-01169-4
Zhu X J, Huang H C, Zhang H F, Zhang Y, Shi P D, Qu K Y, Cheng S B, Wang A L, Lu Q P. Filling mesopores of conductive metalorganic frameworks with Cu clusters for selective nitrate reduction to ammonia[J]. ACS Appl. Mater. Interfaces, 2022,14(28):32176-32182. doi: 10.1021/acsami.2c09241
Du Y X, Zhou Y T, Zhu M Z. Co-based MOF derived metal catalysts: from nano-level to atom-level[J]. Tungsten-Singapore, 2023,5(2)201216.
Wu Z Y, Karamad M, Yong X, Huang Q Z, Cullen D A, Zhu P, Xia C A, Xiao Q F, Shakouri M, Chen F Y, Kim J Y, Xia Y, Heck K, Hu Y F, Wong M S, Li Q L, Gates I, Siahrostami S, Wang H T. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nat. Commun., 2021,12(1)2870. doi: 10.1038/s41467-021-23115-x
Teng M, Yuan J W, Li Y X, Shi C Y, Xu Z, Ma C L, Yang L J, Zhang C, Gao J, Li Y. Bimetallic atom synergistic covalent organic framework for efficient electrochemical nitrate reduction[J]. J. Colloid Interface Sci., 2024,654:348-355. doi: 10.1016/j.jcis.2023.10.041
Mei Z W, Zhou Y L, Lv W Q, Tong S F, Yang X Y, Chen L Q, Zhang N. Recent progress in electrocatalytic urea synthesis under ambient Conditions[J]. ACS Sustain. Chem. Eng., 2022,10(38):12477-12496. doi: 10.1021/acssuschemeng.2c03681
Zhang X R, Zhu X R, Bo S W, Chen C, Cheng K, Zheng J Y, Li S, Tu X J, Chen W, Xie C, Wei X X, Wang D D, Liu Y Y, Chen P S, Jiang S P, Li Y F, Liu Q H, Li C G, Wang S Y. Electrocatalytic urea synthesis with 63[J]. 5% faradaic efficiency and 100% N-selectivity via one-step C-N coupling. Angew. Chem. Int. Ed., 2023,62(33)e202305447.
Geng J, Ji S H, Jin M, Zhang C, Xu M, Wang G Z, Liang C H, Zhang H M. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites[J]. Angew. Chem. Int. Ed., 2023,62(6)e202210958. doi: 10.1002/anie.202210958
Zhang M D, Huang J R, Liao P Q, Chen X M. Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metalorganic framework[J]. Chem. Commun., 2024,60(27):3669-3672. doi: 10.1039/D3CC05821B
Fukushima T, Yamauchi M. Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide[J]. Chem. Commun., 2019,55(98):14721-14724. doi: 10.1039/C9CC07208J
Kim J E, Jang J H, Lee K M, Balamurugan M, Jo Y I, Lee M Y, Choi S, Im S W, Nam K T. Electrochemical synthesis of glycine from oxalic acid and nitrate[J]. Angew. Chem. Int. Ed., 2021,60(40):21943-21951. doi: 10.1002/anie.202108352
Wu J C, Xu L T, Kong Z J, Gu K Z, Lu Y X, Wu X W, Zou Y Q, Wang S Y. Integrated Tandem electrochemical chemical electrochemical coupling of biomass and nitrate to sustainable alanine[J]. Angew. Chem. Int. Ed., 2023,52(45)e202311196.
Li N, Pan C L, Lu G, Pan H H, Han Y S, Wang K, Jin P, Liu Q Y, Jiang J Z. Hydrophobic trinuclear copper cluster-containing organic framework for synergetic electrocatalytic synthesis of amino acids[J]. Adv. Mater., 2024,36(5)2311023. doi: 10.1002/adma.202311023
Chen W, Wu Y D, Jiang Y M, Yang G X, Li Y Y, Xu L T, Yang M, Wu B B, Pan Y P, Xu Y Z, Liu Q H, Chen C, Peng F, Wang S Y, Zou Y Q. Catalyst selection over an electrochemical reductive coupling reaction toward direct electrosynthesis of oxime from NOx and aldehyde[J]. J. Am. Chem. Soc., 2024,146(9):6294-6306. doi: 10.1021/jacs.3c14687
Xiang R A, Wang S H, Liao P S, Xie F Y, Kang J W, Li S S, Xian J H, Guo L N, Li G Q. Electrocatalytic synthesis of pyridine oximes using in situ generated NH2OH from NO species on nanofiber membranes derived from NH2-MIL-53(Al)[J]. Angew. Chem. Int. Ed., 2023,62(45)e202312239. doi: 10.1002/anie.202312239
Wang S H, Xiang R N, Liao P S, Kang J W, Li S S, Mao M, Liu L M, Li G Q. Highly efficient one pot electrosynthesis of oxime ethers from NOx over ultrafine MgO nanoparticles derived from Mgbased metal organic frameworks[J]. Angew. Chem. Int. Ed., 2024,63(26)202405553. doi: 10.1002/anie.202405553
Yang W Q, Mo Q J, He Q T, Li X P, Xue Z Q, Lu Y L, Chen J, Zheng K, Fan Y A, Li G Q, Su C Y. Anion modulation of Ag-imidazole cuboctahedral cage microenvironments for efficient electrocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2024,63(31)e202406564. doi: 10.1002/anie.202406564
Wang Z T, Zhou Y S, Xia C F, Guo W, You B, Xia B Y. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst[J]. Angew. Chem. Int. Ed., 2021,60(35):19107-19112. doi: 10.1002/anie.202107523
Huang L, Liu Z, Gao G, Chen C L, Xue Y R, Zhao J W, Lei Q, Jin M T, Zhu C Q, Han Y, Francisco J S, Lu X. Enhanced CO2 electroreduction selectivity toward ethylene on pyrazolate-stabilized asymmetric Ni-Cu hybrid sites[J]. J. Am. Chem. Soc., 2023,145(48)2644426451.
Yang Y L, Wang Y R, Dong L Z, Li Q, Zhang L, Zhou J, Sun S N, Ding H M, Chen Y, Li S L, Lan Y Q. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction[J]. Adv. Mater., 2022,34(44)2206706. doi: 10.1002/adma.202206706
Zhu H L, Chen H Y, Han Y X, Zhao Z H, Liao P Q, Chen X M. A porous π-π stacking framework with dicopper(Ⅰ) sites and adjacent proton relays for electroreduction of CO2 to C2+ products[J]. J. Am. Chem. Soc., 2022,144(29):13319-13326. doi: 10.1021/jacs.2c04670
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Zheqi Wang , Yawen Lin , Shunliu Deng , Huijun Zhang , Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
(A) Mes: Mesitylene; Dio: Dioxane.