Citation: Zhifang SU, Zongjie GUAN, Yu FANG. Process of electrocatalytic synthesis of small molecule substances by porous framework materials[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290 shu

Process of electrocatalytic synthesis of small molecule substances by porous framework materials

Figures(14)

  • Small molecules, including inorganic compounds such as hydrogen, oxygen, ammonia, hydrocarbons, and hydrogen peroxide that can serve as energy sources, as well as organic compounds like urea and amino acids used in the biochemical industry, are assuming an increasingly pivotal role in daily life and production. The industrial synthesis of small molecule substances still faces challenges, such as the extensive utilization of precious metal catalysts and significant energy inefficiency. Electrochemical synthesis offers several advantages over traditional processes, including reduced catalyst costs, enhanced environmental sustainability, and superior performance. Porous material catalysts based on metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous coordination cages (PCCs) have attracted extensive attention due to their unique morphology, adjustable structure, high catalytic activity, and excellent chemical stability. Therefore, a key area of future research on the electrocatalytic synthesis of small molecules lies in advancing porous framework materials as electrocatalysts for synthesizing small molecule substances. This review provides a comprehensive overview of the utilization of these materials in electrocatalysis.
  • 加载中
    1. [1]

      Liu K K, Meng Z, Fang Y, Jiang H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023100133.

    2. [2]

      Li C, Zhang H, Liu M, Lang F F, Pang J D, Bu X H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis[J]. Ind. Chem. Mater., 2023,1(1):9-38. doi: 10.1039/D2IM00063F

    3. [3]

      Li Z M, Zhang C Q, Liu C, Zhang H W, Song H, Zhang Z Q, Wei G F, Bao X J, Yu C, Yuan P. High-efficiency electroreduction of O2 into H2O2 over ZnCo bimetallic triazole frameworks promoted by ligand activation[J]. Angew. Chem. Int. Ed., 2024,63(2)e202314266. doi: 10.1002/anie.202314266

    4. [4]

      Chen X L, Kuwahara Y, Mori K, Louis C, Yamashita H. Heterometallic and hydrophobic metal-organic frameworks as durable photocatalysts for boosting hydrogen peroxide production in a two-phase system[J]. ACS Appl. Energ. Mater., 2021,4(5):4823-4830. doi: 10.1021/acsaem.1c00371

    5. [5]

      Chen D, Chen W B, Wu Y T, Wang L, Wu X J, Xu H X, Chen L. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production[J]. Angew. Chem. Int. Ed., 2022,62(9)e202217479.

    6. [6]

      Xu Y Q, Guan Z J, Liu K K, Ke M, Zhu L, Fang Y. Remote tuning of secondary metal binding site assisted reconstruction of porous coordination cages for boosting overall water-splitting[J]. Chem. Eng. J., 2024,483149065. doi: 10.1016/j.cej.2024.149065

    7. [7]

      Yang Y, Huang J L, Zou Y B, Li Y B, Zhan T T, Huang L M, Ma X L, Zhang Z J, Xiang S C. N, O-coordinated Zn-MOFs for selective conversion of CO2 to formate[J]. Appl. Surf. Sci., 2023,618156664. doi: 10.1016/j.apsusc.2023.156664

    8. [8]

      Smith P T, Benke B P, Cao Z, Kim Y, Nichols E M, Kim K, Chang C J. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water[J]. Angew. Chem. Int. Ed., 2018,57(31):9684-9688. doi: 10.1002/anie.201803873

    9. [9]

      Banerjee S, Gorham J M, Beccar-Varela P, Hackbarth H G, Siegler M A, Drichko N, Wright J T, Bedford N M, Thoi V S. Atomically dispersed CuNx sites from thermal activation of boron imidazolate cages for electrocatalytic methane generation[J]. ACS Appl. Energ. Mater., 2023,6(18):9044-9056. doi: 10.1021/acsaem.2c01174

    10. [10]

      Lv Y, Ke S W, Gu Y, Tian B, Tang L, Ran P, Zhao Y, Ma J, Zuo J L, Ding M. Highly efficient electrochemical nitrate reduction to ammonia in strong acid conditions with Fe2M-trinuclear-cluster metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2023,52(27)e202305246.

    11. [11]

      Lv Y, Su J, Gu Y M, Tian B L, Ma J, Zuo J L, Ding M N. Atomically precise integration of multiple functional motifs in catalytic metal-organic frameworks for highly efficient nitrate electroreduction[J]. JACS Au, 2022,2(12):2765-2777. doi: 10.1021/jacsau.2c00502

    12. [12]

      An L, Narouz M R, Smith P T, De La Torre P, Chang C J. Supramolecular enhancement of electrochemical nitrate reduction catalyzed by cobalt porphyrin organic cages for ammonia electrosynthesis in water[J]. Angew. Chem. Int. Ed., 2023,62(35)e202305719. doi: 10.1002/anie.202305719

    13. [13]

      Peng X Y, Zeng L B, Wang D S, Liu Z B, Li Y, Li Z J, Yang B, Lei L C, Dai L M, Hou Y. Electrochemical C-N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds[J]. Chem. Soc. Rev., 2023,52(6):2193-2237. doi: 10.1039/D2CS00381C

    14. [14]

      Gerke C S, Xu Y T, Yang Y W, Foley G D, Zhang B A, Shi E T, Bedford N M, Che F L, Thoi V S. Electrochemical C—N bond formation within boron imidazolate cages featuring single copper sites[J]. J. Am. Chem. Soc., 2023,145(48):26144-26151. doi: 10.1021/jacs.3c08359

    15. [15]

      Sun L Z, Liu B. Mesoporous PdN alloy nanocubes for efficient electrochemical nitrate reduction to ammonia[J]. Adv. Mater., 2023,35(1)2207305. doi: 10.1002/adma.202207305

    16. [16]

      Xie M H, Tang S S, Li Z, Wang M Y, Jin Z Y, Li P P, Zhan X, Zhou H, Yu G H. Intermetallic single-atom alloy In-Pd bimetallene for neutral electrosynthesis of ammonia from nitrate[J]. J. Am. Chem. Soc., 2023,145(25):13957-13967. doi: 10.1021/jacs.3c03432

    17. [17]

      Liu H M, Timoshenko J, Bai L C, Li Q Y, Rüscher M, Sun C H, Cuenya B R, Luo J S. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia[J]. ACS Catal., 2023,13(2):1513-1521. doi: 10.1021/acscatal.2c03004

    18. [18]

      Pi Y C, Qiu Z M, Sun Y, Ishii H, Liao Y F, Zhang X Y, Chen H Y, Pang H. Synergistic mechanism of sub-nanometric Ru clusters anchored on tungsten oxide nanowires for high-efficient bifunctional hydrogen electrocatalysis[J]. Adv. Sci., 2023,10(7)2206096. doi: 10.1002/advs.202206096

    19. [19]

      Yuan J P, Guan Z J, Lin H Y, Yan B, Liu K K, Zhou H C, Fang Y. Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution[J]. Angew. Chem. Int. Ed., 2023,62(31)e202303896. doi: 10.1002/anie.202303896

    20. [20]

      He H H, Yuan J P, Cai P Y, Wang K Y, Feng L, Kirchon A, Li J, Zhang L L, Zhou H C, Fang Y. Yolk-shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions[J]. J. Am. Chem. Soc., 2023,145(31):17164-17175. doi: 10.1021/jacs.3c03883

    21. [21]

      Zhou X, Ma L L, Yu L, Zhou K, Xiong K C, Gai Y L, Li J, Wang H. Size-exclusion separation of hexane isomers by a Y-MOF built on {Y(COO)3}n chains[J]. ACS Mater. Lett., 2024,6(3):928-932. doi: 10.1021/acsmaterialslett.4c00113

    22. [22]

      Zhou L, Brântuas P, Henrique A, Reinsch H, Wahiduzzaman M, Grenèche J M, Rodrigues A E, Silva J A C, Maurin G, Serre C. A microporous multi-cage metal-organic framework for an effective one-step separation of branched alkanes feeds[J]. Angew. Chem. Int. Ed., 2024,63(15)e202320008. doi: 10.1002/anie.202320008

    23. [23]

      Liu K K, Guan Z J, Ke M, Fang Y. Bridging the gap between charge storage site and transportation pathway in molecular-cage-based flexible electrodes[J]. ACS Central Sci., 2023,9(4):805-815. doi: 10.1021/acscentsci.3c00027

    24. [24]

      Geng P B, Wang L, Du M, Bai Y, Li W T, Liu Y F, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li-S batteries: shape or size?[J]. Adv. Mater., 2022,43(4)2107836.

    25. [25]

      Chen T T, Wang F F, Cao S, Bai Y, Zheng S S, Li W T, Zhang S T, Hu S X, Pang H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Adv. Mater., 2022,342201779. doi: 10.1002/adma.202201779

    26. [26]

      Zhao Y Y, Yuan J P, Zhu L, Fang Y. Photocatalytic synthesis of small-molecule drugs by porous framework materials[J]. Chin. Chem. Lett., 2024,35(3)109065. doi: 10.1016/j.cclet.2023.109065

    27. [27]

      Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995,378(6558):703-706. doi: 10.1038/378703a0

    28. [28]

      Mohan B, Kumari R, Virender , Singh G, Singh K, Pombeiro A J L, Yang X M, Ren P. Covalent organic frameworks (COFs) and metalorganic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues[J]. Environ. Int., 2023,175107928. doi: 10.1016/j.envint.2023.107928

    29. [29]

      Niu Q, Mi L H, Chen W, Li Q J, Zhong S H, Yu Y, Li L Y. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis[J]. Chin. J. Catal., 2023,50:45-82. doi: 10.1016/S1872-2067(23)64457-2

    30. [30]

      Li J, Jing X C, Li Q Q, Li S W, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chem. Soc. Rev., 2020,49(11):3565-3604. doi: 10.1039/D0CS00017E

    31. [31]

      Hu H Y, Miao R Y, Yang F L, Duan F, Zhu H, Hu Y M, Du M L, Lu S L. Intrinsic activity of metalized porphyrin-based covalent organic frameworks for electrocatalytic nitrate reduction[J]. Adv. Energy Mater., 2023,14(6)2302608.

    32. [32]

      Huang N, Chen X, Krishna R, Jiang D L. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angew. Chem. Int. Ed., 2015,54(10):2986-2990. doi: 10.1002/anie.201411262

    33. [33]

      Liu M, Liao W P, Hu C H, Du S C, Zhang H J. Calixarenebased nanoscale coordination cages[J]. Angew. Chem. Int. Ed., 2012,51(7):1585-1588. doi: 10.1002/anie.201106732

    34. [34]

      Liang Y, Li E R, Wang K Y, Guan Z J, He H H, Zhang L L, Zhou H C, Huang F H, Fang Y. Organo-macrocycle-containing hierarchical metal-organic frameworks and cages: Design, structures, and applications[J]. Chem. Soc. Rev., 2022,51(19):8378-8405. doi: 10.1039/D2CS00232A

    35. [35]

      Fang Y, Zhou H C. Metal nanoparticles encapsulated within charge tunable porous coordination cages for hydrogen generation reaction[J]. Catal. Today, 2021,374:12-19. doi: 10.1016/j.cattod.2020.10.030

    36. [36]

      Fang Y, Xiao Z F, Li J L, Lollar C, Liu L J, Lian X Z, Yuan S, Banerjee S, Zhang P, Zhou H C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage[J]. Angew. Chem. Int. Ed., 2018,57(19):5283-5287. doi: 10.1002/anie.201712372

    37. [37]

      Liang C J, Yuan J P, Zhu C F, Fang Y. Surface charges of porous coordination cage tune the catalytic reactivity of Knoevenagel condensation[J]. Catal. Today, 2022,400/401:89-94. doi: 10.1016/j.cattod.2021.11.008

    38. [38]

      Li S S, Gao Y Q, Li N, Ge L, Bu X H, Feng P Y. Transition metalbased bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction[J]. Energy Environ. Sci., 2021,14(4)18971927.

    39. [39]

      Gunaseelan H, Munde A V, Patel R, Sathe B R. Metal-organic framework derived carbon based electrocatalysis for hydrogen evolution reactions: A review[J]. Mater. Today Sustain., 2023,22100371.

    40. [40]

      Du J, Li F, Sun L C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chem. Soc. Rev., 2021,50(4):2663-2695. doi: 10.1039/D0CS01191F

    41. [41]

      Iqbal B, Laybourn A, O'Shea J N, Argent S P, Zaheer M. Electrocatalytic hydrogen evolution over micro and mesoporous cobalt metal organic frameworks[J]. Mol. Catal., 2022,531112711. doi: 10.1016/j.mcat.2022.112711

    42. [42]

      Geng B, Yan F, Zhang X, He Y Q, Zhu C L, Chou S L, Zhang X L, Chen Y J. Conductive CuCo based bimetal organic framework for efficient hydrogen evolution[J]. Adv. Mater., 2021,33(49)2106781. doi: 10.1002/adma.202106781

    43. [43]

      Zhang R Z, Lu L L, Chen Z H, Zhang X, Wu B Y, Shi W, Cheng P. Bimetallic cage-based metal-organic frameworks for electrochemical hydrogen evolution reaction with enhanced activity[J]. Chem.-Eur. J., 2022,28(28)e202200401. doi: 10.1002/chem.202200401

    44. [44]

      Hu F, Yu D S, Zeng W J, Lin Z Y, Han S L, Sun Y J, Wang H, Ren J W, Hung S F, Li L L, Peng S J. Active site tailoring of metal-organic frameworks for highly efficient oxygen evolution[J]. Adv. Energy Mater., 2023,13(29)2301224. doi: 10.1002/aenm.202301224

    45. [45]

      Jiang Y J, Chen T Y, Chen J L, Liu Y, Yuan X L, Yan J C, Sun Q, Xu Z C, Zhang D L, Wang X, Meng C G, Guo X W, Ren L M, Liu L M, Lin R Y Y. Heterostructured bimetallic MOF-on-MOF architectures for efficient oxygen evolution reaction[J]. Adv. Mater., 2024,36(8)2306910. doi: 10.1002/adma.202306910

    46. [46]

      Ding J T, Guo D Y, Wang N S, Wang H F, Yang X F, Shen K, Chen L Y, Li Y W. Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2023,135(43)e202311909. doi: 10.1002/ange.202311909

    47. [47]

      Zhang C Q, Yuan L, Liu C, Li Z M, Zou Y Y, Zhang X C, Zhang Y, Zhang Z Q, Wei G F, Yu C Z. Crystal engineering enables cobaltbased metal organic frameworks as high performance electrocatalysts for H2O2 production[J]. J. Am. Chem. Soc., 2023,145(14)77917799.

    48. [48]

      Yang X B, An Q Z, Li X W, Fu Y B, Yang S, Liu M H, Xu Q, Zeng G F. Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction[J]. Nat. Commun., 2024,15(1)1889. doi: 10.1038/s41467-024-46291-y

    49. [49]

      Wang Q, Wang C, Zheng K P, Wang B B, Wang Z, Zhang C H, Long X J. Positional thiophene isomerization: A geometric strategy for precisely regulating the electronic state of covalent organic frameworks to boost oxygen reduction[J]. Angew. Chem. Int. Ed., 2024,63(15)e202320037. doi: 10.1002/anie.202320037

    50. [50]

      Yu Y, Li Y, Fang Y, Wen L L, Tu B B, Huang Y. Recent advances of ammonia synthesis under ambient conditions over metal organic framework based electrocatalysts[J]. Appl. Catal. B-Environ., 2024,340123161. doi: 10.1016/j.apcatb.2023.123161

    51. [51]

      Liao P S, Kang J W, Xiang R A, Wang S H, Li G Q. Electrocatalytic systems for NOx valorization in organonitrogen synthesis[J]. Angew. Chem. Int. Ed., 2023,63(3)e202311752.

    52. [52]

      Wen X D, Guan J D. Recent advancement in the electrocatalytic synthesis of ammonia[J]. Nanoscale, 2020,12(15):8065-8094. doi: 10.1039/D0NR01359E

    53. [53]

      Xiong Y C, Wang Y H, Zhou J W, Liu F, Hao F K, Fan Z X. Electrochemical nitrate reduction: Ammonia synthesis and the beyond[J]. Adv. Mater., 2024,36(17)2304021. doi: 10.1002/adma.202304021

    54. [54]

      Zhao X R, Yin F X, Liu N, Li G R, Fan T X, Chen B H. Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2(air) and water at low temperature and ambient pressure[J]. J. Mater. Sci., 2017,52(17):10175-10185. doi: 10.1007/s10853-017-1176-5

    55. [55]

      Duan J J, Sun Y T, Chen S, Chen X J, Zhao C. A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation[J]. J. Mater. Chem. A, 2020,8(36):18810-18815. doi: 10.1039/D0TA05010E

    56. [56]

      Jiang M H, Han L K, Peng P, Hu Y, Xiong Y, Mi C X, Tie Z X, Xiang Z H, Jin Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis[J]. Nano Lett., 2022,22(1):372-379. doi: 10.1021/acs.nanolett.1c04009

    57. [57]

      Feng D M, Zhou L X, White T J, Cheetham A K, Ma T Y, Wei F X. Nanoengineering metal-organic frameworks and derivatives for electrosynthesis of ammonia[J]. Nano-Micro Lett., 2023,15(1)203. doi: 10.1007/s40820-023-01169-4

    58. [58]

      Zhu X J, Huang H C, Zhang H F, Zhang Y, Shi P D, Qu K Y, Cheng S B, Wang A L, Lu Q P. Filling mesopores of conductive metalorganic frameworks with Cu clusters for selective nitrate reduction to ammonia[J]. ACS Appl. Mater. Interfaces, 2022,14(28):32176-32182. doi: 10.1021/acsami.2c09241

    59. [59]

      Du Y X, Zhou Y T, Zhu M Z. Co-based MOF derived metal catalysts: from nano-level to atom-level[J]. Tungsten-Singapore, 2023,5(2)201216.

    60. [60]

      Wu Z Y, Karamad M, Yong X, Huang Q Z, Cullen D A, Zhu P, Xia C A, Xiao Q F, Shakouri M, Chen F Y, Kim J Y, Xia Y, Heck K, Hu Y F, Wong M S, Li Q L, Gates I, Siahrostami S, Wang H T. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nat. Commun., 2021,12(1)2870. doi: 10.1038/s41467-021-23115-x

    61. [61]

      Teng M, Yuan J W, Li Y X, Shi C Y, Xu Z, Ma C L, Yang L J, Zhang C, Gao J, Li Y. Bimetallic atom synergistic covalent organic framework for efficient electrochemical nitrate reduction[J]. J. Colloid Interface Sci., 2024,654:348-355. doi: 10.1016/j.jcis.2023.10.041

    62. [62]

      Mei Z W, Zhou Y L, Lv W Q, Tong S F, Yang X Y, Chen L Q, Zhang N. Recent progress in electrocatalytic urea synthesis under ambient Conditions[J]. ACS Sustain. Chem. Eng., 2022,10(38):12477-12496. doi: 10.1021/acssuschemeng.2c03681

    63. [63]

      Zhang X R, Zhu X R, Bo S W, Chen C, Cheng K, Zheng J Y, Li S, Tu X J, Chen W, Xie C, Wei X X, Wang D D, Liu Y Y, Chen P S, Jiang S P, Li Y F, Liu Q H, Li C G, Wang S Y. Electrocatalytic urea synthesis with 63[J]. 5% faradaic efficiency and 100% N-selectivity via one-step C-N coupling. Angew. Chem. Int. Ed., 2023,62(33)e202305447.

    64. [64]

      Geng J, Ji S H, Jin M, Zhang C, Xu M, Wang G Z, Liang C H, Zhang H M. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites[J]. Angew. Chem. Int. Ed., 2023,62(6)e202210958. doi: 10.1002/anie.202210958

    65. [65]

      Zhang M D, Huang J R, Liao P Q, Chen X M. Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metalorganic framework[J]. Chem. Commun., 2024,60(27):3669-3672. doi: 10.1039/D3CC05821B

    66. [66]

      Fukushima T, Yamauchi M. Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide[J]. Chem. Commun., 2019,55(98):14721-14724. doi: 10.1039/C9CC07208J

    67. [67]

      Kim J E, Jang J H, Lee K M, Balamurugan M, Jo Y I, Lee M Y, Choi S, Im S W, Nam K T. Electrochemical synthesis of glycine from oxalic acid and nitrate[J]. Angew. Chem. Int. Ed., 2021,60(40):21943-21951. doi: 10.1002/anie.202108352

    68. [68]

      Wu J C, Xu L T, Kong Z J, Gu K Z, Lu Y X, Wu X W, Zou Y Q, Wang S Y. Integrated Tandem electrochemical chemical electrochemical coupling of biomass and nitrate to sustainable alanine[J]. Angew. Chem. Int. Ed., 2023,52(45)e202311196.

    69. [69]

      Li N, Pan C L, Lu G, Pan H H, Han Y S, Wang K, Jin P, Liu Q Y, Jiang J Z. Hydrophobic trinuclear copper cluster-containing organic framework for synergetic electrocatalytic synthesis of amino acids[J]. Adv. Mater., 2024,36(5)2311023. doi: 10.1002/adma.202311023

    70. [70]

      Chen W, Wu Y D, Jiang Y M, Yang G X, Li Y Y, Xu L T, Yang M, Wu B B, Pan Y P, Xu Y Z, Liu Q H, Chen C, Peng F, Wang S Y, Zou Y Q. Catalyst selection over an electrochemical reductive coupling reaction toward direct electrosynthesis of oxime from NOx and aldehyde[J]. J. Am. Chem. Soc., 2024,146(9):6294-6306. doi: 10.1021/jacs.3c14687

    71. [71]

      Xiang R A, Wang S H, Liao P S, Xie F Y, Kang J W, Li S S, Xian J H, Guo L N, Li G Q. Electrocatalytic synthesis of pyridine oximes using in situ generated NH2OH from NO species on nanofiber membranes derived from NH2-MIL-53(Al)[J]. Angew. Chem. Int. Ed., 2023,62(45)e202312239. doi: 10.1002/anie.202312239

    72. [72]

      Wang S H, Xiang R N, Liao P S, Kang J W, Li S S, Mao M, Liu L M, Li G Q. Highly efficient one pot electrosynthesis of oxime ethers from NOx over ultrafine MgO nanoparticles derived from Mgbased metal organic frameworks[J]. Angew. Chem. Int. Ed., 2024,63(26)202405553. doi: 10.1002/anie.202405553

    73. [73]

      Yang W Q, Mo Q J, He Q T, Li X P, Xue Z Q, Lu Y L, Chen J, Zheng K, Fan Y A, Li G Q, Su C Y. Anion modulation of Ag-imidazole cuboctahedral cage microenvironments for efficient electrocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2024,63(31)e202406564. doi: 10.1002/anie.202406564

    74. [74]

      Wang Z T, Zhou Y S, Xia C F, Guo W, You B, Xia B Y. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst[J]. Angew. Chem. Int. Ed., 2021,60(35):19107-19112. doi: 10.1002/anie.202107523

    75. [75]

      Huang L, Liu Z, Gao G, Chen C L, Xue Y R, Zhao J W, Lei Q, Jin M T, Zhu C Q, Han Y, Francisco J S, Lu X. Enhanced CO2 electroreduction selectivity toward ethylene on pyrazolate-stabilized asymmetric Ni-Cu hybrid sites[J]. J. Am. Chem. Soc., 2023,145(48)2644426451.

    76. [76]

      Yang Y L, Wang Y R, Dong L Z, Li Q, Zhang L, Zhou J, Sun S N, Ding H M, Chen Y, Li S L, Lan Y Q. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction[J]. Adv. Mater., 2022,34(44)2206706. doi: 10.1002/adma.202206706

    77. [77]

      Zhu H L, Chen H Y, Han Y X, Zhao Z H, Liao P Q, Chen X M. A porous π-π stacking framework with dicopper(Ⅰ) sites and adjacent proton relays for electroreduction of CO2 to C2+ products[J]. J. Am. Chem. Soc., 2022,144(29):13319-13326. doi: 10.1021/jacs.2c04670

  • 加载中
    1. [1]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    2. [2]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return