Citation: Huanhuan XIE, Yingnan SONG, Lei LI. Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281 shu

Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism

Figures(6)

  • This paper conducts an in-depth study of the lattice thermal conductivity and phonon transport properties of two-dimensional single-layer BiOI nanosheets. Combining first-principles calculations and Boltzmann transport theory, we systematically analyzed the phonon group velocity, Greeneisen parameter, three-phonon scattering rate, and scattering phase space of single-layer BiOI nanosheets at different temperatures and other key physical quantities. Calculation results show that the intrinsic lattice thermal conductivity of single-layer BiOI nanosheets at room temperature was approximately 4.71 W·m-1·K-1, significantly decreasing to 1.74 W·m-1·K-1, as the temperature increased to 800 K. The out-of-plane acoustic (ZA), transverse acoustic (TA), and longitudinal acoustic (LA) phonon modes contribute almost equally to the lattice thermal conductivity in the studied temperature range. The physical origin of low lattice thermal conductivity is attributed to low phonon group velocity, strong phonon-phonon scattering process, and low Debye temperature. In addition, we also explored the electronic structure and confirmed that the single-layer BiOI nanosheet has semiconductor properties and an indirect band gap of approximately 2.16 eV.
  • 加载中
    1. [1]

      CHENG H F, HUANG B B, DAI Y. Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014,6(4):2009-2026.

    2. [2]

      LI J, YU Y, ZHANG L Z. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis[J]. Nanoscale, 2014,6(15):8473-8488.

    3. [3]

      ZHANG X, AI Z H, JIA F L, ZHANG L Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. J. Phys. Chem. C, 2008,112(3):747-753.

    4. [4]

      YU J B, LI T W, SUN Q. Single-layer BiOBr: An effective p-type 2D thermoelectric material[J]. J. Appl. Phys., 2019,125(20)205111. doi: 10.1063/1.5098826

    5. [5]

      BALANDIN A, WANG K L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells[J]. J. Appl. Phys., 1998,84(11):6149-6153.

    6. [6]

      CHEN G, NEAGU M, BORCA-TASCIUC T. Thermal conductivity and heat transfer in superlattices[J]. MRS Proc., 1997,47885. doi: 10.1557/PROC-478-85

    7. [7]

      YANG X, SU X L, YAN Y G, TANG X F. Structures and thermoelectric properties of (GeTe)nBi2Te3[J]. J. Inorg. Mater., 2021,36(1):75-80.

    8. [8]

      LI T W, YU J B, NIE G, ZHANG B P, SUN Q. The ultralow thermal conductivity and ultrahigh thermoelectric performance of fluorinated Sn2Bi sheet in room temperature[J]. Nano Energy, 2020,67104283. doi: 10.1016/j.nanoen.2019.104283

    9. [9]

      LI T W, DU P H, BAI L, JENA P. NaNO3 monolayer: A stable graphenelike supersalt with strong four-phonon scattering and low lattice thermal conductivity insensitive to temperature[J]. Phys. Rev. Mater., 2022,6(6)064009. doi: 10.1103/PhysRevMaterials.6.064009

    10. [10]

      LI T W, DU P H, BAI L, JENA P. Thermoelectric figure of merit of a superatomic crystal Re6Se8I2 monolayer[J]. Phys. Rev. Appl., 2022,18(6)064067. doi: 10.1103/PhysRevApplied.18.064067

    11. [11]

      BAI J, SUN J, ZHU X, LIU J, ZHANG H, YIN X B, LIU L. Enhancement of solar-driven photocatalytic activity of BiOI nanosheets through predominant exposed high energy facets and vacancy engineering[J]. Small, 2020,16(5)e1904783. doi: 10.1002/smll.201904783

    12. [12]

      SAJJAD M, SINGH N, LARSSON J A. Bulk and monolayer bismuth oxyiodide (BiOI): Excellent high temperature p-type thermoelectric materials[J]. AIP Adv., 2020,10(7)075309. doi: 10.1063/1.5133711

    13. [13]

      LI X, XI L L, YANG J. First principles high-throughput research on thermoelectric materials: A review[J]. J. Inorg. Mater., 2019,34(3):236-246.

    14. [14]

      LOU X N, DENG H Q, LI S, ZHANG Q T, XIONG W J, TANG G D. Thermal and electrcial transport properities of Ge doped MnTe thermoelectrics[J]. J. Inorg. Mater., 2022,37(2):209-214.

    15. [15]

      KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16)11169. doi: 10.1103/PhysRevB.54.11169

    16. [16]

      KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-50. doi: 10.1016/0927-0256(96)00008-0

    17. [17]

      BLÖCHL P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953

    18. [18]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    19. [19]

      HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. J. Chem. Phys., 2003,118(18):8207-8215. doi: 10.1063/1.1564060

    20. [20]

      LI W, CARRETE J, KATCHO N A, MINGO N. ShengBTE: A solver of the Boltzmann transport equation for phonons[J]. Comput. Phys. Commun., 2014,185(6):1747-1758. doi: 10.1016/j.cpc.2014.02.015

    21. [21]

      BARONI S, GIRONCOLI D S, CORSO D A, GIANNOZZI P. Phonons and related crystal properties from density-functional perturbation theory[J]. Rev. Mod. Phys., 2001,73(2):515-562. doi: 10.1103/RevModPhys.73.515

    22. [22]

      GONZE X, LEE C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Phys. Rev. B, 1997,55(16):10355-10368. doi: 10.1103/PhysRevB.55.10355

    23. [23]

      BANNISTER F A. The crystal-structure of the bismuth oxyhalides[J]. Mineral. Mag., 1935,24(149):49-58.

    24. [24]

      TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scr. Mater., 2015,108:1-5.

    25. [25]

      GUPTA S K, SONI H R, JHA P K. Electronic and phonon bandstructures of pristine few layer and metal doped graphene using first principles calculations[J]. AIP Adv., 2013,3(3)032117.

    26. [26]

      D'SOUZA R, MUKHERJEE S. Length-dependent lattice thermal conductivity of single-layer and multilayer hexagonal boron nitride: A first-principles study using the Callaway-Klemens and real-space supercell methods[J]. Phys. Rev. B, 2017,96(20)205422.

    27. [27]

      CAI Y Q, LAN J H, ZHANG G, ZHANG Y W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2[J]. Phys. Rev. B, 2014,89(3)035438. doi: 10.1103/PhysRevB.89.035438

    28. [28]

      ZHANG X, LI B H, WANG J L, YUAN Y, ZHANG Q J, GAO Z Z, LIU L M, CHEN L. The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting[J]. Phys. Chem. Chem. Phys., 2014,16(47):25854-25861.

    29. [29]

      HUANG W L, ZHU Q S. Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts[J]. Comput. Mater. Sci., 2008,43(4):1101-1108.

    30. [30]

      YU C L, CAO F F, LI G, WEI R F, YU J C, JIN R C, FAN Q Z, WANG C Y. Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation[J]. Sep. Purif. Technol., 2013,120:110-122.

    31. [31]

      NAKASHIMA T, UMAKOSHI Y. Anisotropy of electrical resistivity and thermal expansion of single-crystal Ti5Si3[J]. Philos. Mag. Lett., 1992,66(6):317-321.

    32. [32]

      ZHONG Q, DAI Z H, LIU J Y, ZHAO Y C, MENG S. The excellent TE performance of photoelectric material CdSe along with a study of Zn(Cd)Se and Zn(Cd)Te based on first-principles[J]. RSC Adv., 2019,9(44):25471-25479.

    33. [33]

      LINDSAY L, BROIDO D A, MINGO N. Flexural phonons and thermal transport in graphene[J]. Phys. Rev. B, 2010,82(11)115427.

    34. [34]

      WANG F Q, HU M, WANG Q. Ultrahigh thermal conductivity of carbon allotropes with correlations with the scaled Pugh ratio[J]. J. Mater. Chem. A, 2019,7(11):6259-6266.

    35. [35]

      FULTZ B. Vibrational thermodynamics of materials[J]. Prog. Mater. Sci., 2010,55(4):247-352.

    36. [36]

      LI T W, NIE G, SUN Q. Highly sensitive tuning of lattice thermal conductivity of graphene-like borophene by fluorination and chlorination[J]. Nano Res., 2020,13(4):1171-1177.

    37. [37]

      CHAUDHURI S, BHATTACHARYA A, DAS A K, DAS J P, DEV B N. Hydrostatic pressure induced anomalous enhancement in the thermoelectric performance of monolayer MoS2[J]. ACS Appl. Energ. Mater., 2023,6(22):11694-11704.

    38. [38]

      LINDSAY L, BROIDO D A. Three-phonon phase space and lattice thermal conductivity in semiconductors[J]. J. Phys.‒Condens. Matter., 2008,20(16)165209.

    39. [39]

      ZHANG H, HUA C, DING D, MINNICH A J. Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures[J]. Sci. Rep., 2015,59121.

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    4. [4]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    5. [5]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    6. [6]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    13. [13]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    16. [16]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    20. [20]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(13)
  • Abstract views(1234)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return