Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers

Xiumei LI Linlin LI Bo LIU Yaru PAN

Citation:  Xiumei LI, Linlin LI, Bo LIU, Yaru PAN. Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273 shu

两个Cd(Ⅱ)配位聚合物的合成、晶体结构及表征

    通讯作者: 李琳琳, 403666495@qq.com
    刘博, 112363305@qq.com
  • 基金项目:

    吉林省科技发展计划 JJKH20210541KJ

摘要: 在水热环境下, 成功合成了2种全新的过渡金属配位聚合物{[Cd(oba)(L)2]·H2O}n (1)和[Cd(4-nph)(L)2]n (2), 其中H2oba= 4, 4′-二苯醚二甲酸, 4-H2nph=4-硝基邻苯二甲酸, L=2, 2′-联咪唑。通过红外光谱、元素分析、单晶X射线衍射、粉末X射线衍射和热重分析对配合物结构进行了表征。单晶X射线衍射的结果显示, 配合物1呈现出一维的锯齿链状结构, 并借助N—H…O氢键以及π-π堆积相互作用, 进一步拓展至二维网络。配合物2具有零维结构, 同样通过N—H…O氢键和π-π堆积相互作用延伸形成二维网络。另外, 12在固体状态时均展现出发光的特性。此外, 运用Gaussian16程序构建的PBE0/LANL2DZ方法, 针对从12的晶体结构中提取出的"分子碎片"开展了量子化学计算。计算所得结果表明, 配位原子与Cd(Ⅱ)之间存在显著的共价相互作用。

English

  • Coordination polymers (CPs) are usually obtained from multi-dentate organic ligands as building templates or assembled from connecting rods with metal ions as nodes[1-3]. Among them, multi-dentate nitrogen-containing ligands, multi-dentate carboxylic acid ligands, and multi-dentate pyridine carboxylic acid ligands are the preferred ligands to self-assemble organic ligands[4]. The CPs have potential applications in the fields of catalysis, ion recognition and antioxidation, electrochemistry, etc., and are one of the research hot spots in organometallic chemistry and coordination chemistry[5-9]. The synthesis of CPs using ligands containing carboxyl groups is more common. In addition to structural stability, due to the multiple coordination modes and bridging modes of carboxyl-containing ligands, the CPs are easy to obtain topological diversity and excellent properties. Ligands containing nitrogen or oxygen groups can be reintroduced during the construction of the CPs to increase the active sites, form more coordination modes, diversify the pore channels, and improve their luminescence performance[10-13].

    Among them, 4, 4′-oxydibenzoic/4-nitrophthalic acid (H2oba/4-H2nph)-like ligands are important ligands for the preparation of functional CPs materials, because having bifunctional groups in the para- position provides the possibility of forming polymer chains of mono- and heterometallic 2D or 3D coordination compounds, which can be used as one of the ligands for the synthesis of bidentate, tridentate or tetradentate chelate CPs based on the characteristics of oba2-/4-nph2- ion structure. The presence of empty d orbitals in transition metals allows the use of hybrid orbitals to accept electrons, resulting in stable structures of 16 or 18 electrons, and thus are widely used for the preparation of CPs[14-17]. Our group chose H2oba/ 4-H2nph as the primary ligand and 2, 2′-biimidazole (L) as the secondary ligands and obtained CPs {[Cd(oba)(L)2]·H2O}n (1) and [Cd(4-nph)(L)2]n (2). The structures were characterized by IR, elemental analyses, single-crystal X-ray diffraction, and powder X-ray diffraction (PXRD), and their thermal stability and fluorescence properties were also investigated. In addition, the quantum-chemical calculations were accomplished on 'molecular fragments' extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method built in the Gaussian16 program.

    All reagents were commercially procured and employed without undergoing any additional purification processes. Elemental analyses (of carbon, hydrogen, and nitrogen) were conducted on a Vario EL Ⅲ Elemental Analyzer. The IR spectrum was documented within a 4 000-400 cm-1 range on a Nicolet 6700 Spectrophotometer, utilizing a KBr pellet. PXRD patterns were gathered in a 2θ range of 5°-50° at a scan speed of 0.1 (°)·s-1 on a Bruker D8 Advance instrument, employing Cu radiation (λ=0.154 18 nm, voltage: 40 kV, current: 40 mA) at room temperature. The thermal stability studies were executed on a Perkin-Elmer TGA7 analyzer. The fluorescent studies were implemented on a computer-controlled JY Fluoro-Max-3 spectrometer at room temperature.

    A mixture of H2oba (0.20 mmol, 0.051 6 g), Cd(OAc)2·2H2O (0.20 mmol, 0.053 0 g), and L (0.20 mmol, 0.026 8 g) was dissolved in deionized water (15 mL). After continuous stirring for 30 min, a sufficient amount of triethylamine was added to the aforesaid solution to adjust the pH value to 8.07. Then the solution was sealed in a Parr Teflon-lined stainless-steel vessel (25 mL) under autogenous pressure at 160 ℃ for 5 d. Subsequently, it was cooled down to 30 ℃ at a rate of 5 ℃·h-1 for 26 h and then reduced to room temperature. Yellow crystals of complex 1 were obtained, with a yield of 20% (based on Cd). Elemental Anal. Calcd. for C26H22CdN8O6(%): C, 47.68; N, 17.11; H, 3.39. Found(%): C, 47.12; N, 16.95; H, 3.01. IR (cm-1): 3 124 w, 1 596s, 1 547w, 1 498m, 1 384s, 1 305w, 1 259s, 1 162 s, 1 140w, 1 121w, 1 011w, 991w, 882m, 857w, 783m, 771w, 692w, 666w, 625w.

    The synthesis of complex 2 was the same as that of complex 1, except that H2oba was replaced with 4-H2nph (0.20 mmol, 0.042 2 g) and the pH value was adjusted to 6.03 using NaOH. Yellow crystals of 2 were obtained with a yield of 25% (based on Cd). Elemental Anal. Calcd. for C20H15CdN9O6(%): C, 40.73; N, 21.37; H, 2.56. Found(%): C, 40.22; N, 20.95; H, 2.11. IR (cm-1): 3 124w, 2 902w, 1 573m, 1 519m, 1 413w, 1 382 m, 1 346s, 1 325w, 1 247w, 1 158w, 1 121m, 1 065w, 993m, 823w, 750m, 723w, 651m, 667w.

    Two single crystals with dimensions of 0.16 mm×0.15 mm×0.13 mm (1) and 0.15 mm×0.12 mm×0.10 mm (2) were selected and the data were gathered at 293(2) K on an Oxford Diffraction Gemini R Ultra diffractometer with Mo (λ=0.071 073 nm). The structures were solved through direct methods by employing the SHELXS-97 program of the SHELXL-97 crystallographic software package and refined on F 2 through full-matrix least-squares methods. All non- hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. A summary of the crystallography data and structure refinements for complexes 1 and 2 is presented in Table 1. The selected bond lengths and angles for 1 and 2 are listed in Table 2.

    Table 1

    Table 1.  Crystallography data and structure refinements for complexes 1 and 2
    下载: 导出CSV
    Parameter 1 2
    Empirical formula C26H22CdN8O6 C20H15CdN9O6
    Formula weight 652.90 589.81
    Crystal system Monoclinic Monoclinic
    Space group P21/n P21/n
    a / nm 0.779 62(4) 0.851 59(8)
    b / nm 1.868 74(9) 1.264 60(13)
    c / nm 1.827 61(9) 2.110 4(2)
    β / (°) 98.864 0(10) 96.100(2)
    Volume / nm3 2.630 9(2) 2.259 8(4)
    Z 4 4
    Dc / (g·cm-3) 1.648 1.734
    GOF 1.041 1.069
    Reflection collected, unique 4 675, 3 126 5 465, 4 763
    Rint 0.038 0 0.031 2
    R [I > 2σ(I)] 0.036 1 0.027 8
    wR 0.083 1 0.060 0

    Table 2

    Table 2.  Selected bond lengths (nm) and bond angles (°) for complexes 1 and 2
    下载: 导出CSV
    1
    Cd1—N1 0.224 8(3) Cd1—N1A 0.224 8(3) Cd1—N2 0.237 5(3)
    Cd1—N2A 0.237 5(3) Cd1—O1 0.245 0(3) Cd1—O1A 0.245 0(3)
    Cd2—N5 0.227 6(3) Cd2—N5B 0.227 6(3) Cd2—N6 0.233 0(3)
    Cd2—N6B 0.233 0(3) Cd2—O4 0.246 3(3) Cd2—O4B 0.246 3(3)
    N1A—Cd1—N1 180.0 N1—Cd1—N2A 104.94(11) N1A—Cd1—N2 104.94(11)
    N1—Cd1—N2 75.06(11) N2A—Cd1—N2 180.0 N1—Cd1—O1A 90.19(10)
    N2—Cd1—O1A 88.45(11) N1A—Cd1—O1 90.19(10) N1—Cd1—O1 89.81(10)
    N2A—Cd1—O1 88.45(11) N2—Cd1—O1 91.55(11) O1A—Cd1—O1 180.00(7)
    N5—Cd2—N5B 180.00(10) N5—Cd2—N6 74.97(10) N5B—Cd2—N6 105.03(10)
    N5—Cd2—N6B 105.03(10) N6—Cd2—N6B 180.00(11) N5—Cd2—O4B 90.22(10)
    N6—Cd2—O4B 83.70(10) N5—Cd2—O4 89.78(10) N5B—Cd2—O4 90.22(10)
    N6—Cd2—O4 96.30(10) N6B—Cd2—O4 83.70(10) O4B—Cd2—O4 180.00(14)
    2
    Cd1—O1 0.230 03(16) Cd1—O4 0.238 26(16) Cd1—N1 0.233 4(2)
    Cd1—N2 0.233 43(18) Cd1—N5 0.232 98(19) Cd1—N6 0.232 1(2)
    O1—Cd1—N6 161.80(7) O1—Cd1—N5 101.59(6) N6—Cd1—N5 74.37(7)
    O1—Cd1—N1 100.26(6) N6—Cd1—N1 87.76(7) N5—Cd1—N1 155.95(7)
    O1—Cd1—N2 86.62(6) N6—Cd1—N2 111.40(7) N5—Cd1—N2 97.65(7)
    N1—Cd1—N2 73.68(6) O1—Cd1—O4 76.81(6) N6—Cd1—O4 85.91(7)
    N5—Cd1—O4 96.26(6) N1—Cd1—O4 98.42(6) N2—Cd1—O4 160.20(6)
    Symmetry codes: A: 3-x, -y, -1-z; B: 2-x, -y, -z for 1.

    The asymmetric unit of complex 1 (Fig.S1, Supporting information) comprises two crystallographically unique Cd cations (its occupancy is 0.5), one oba2- ligand, two L ligands, and one lattice water molecule. As depicted in Fig.1, the Cd(Ⅱ) ion is situated in a distorted octahedral coordination geometry, being equatorially coordinated by four imidazole N atoms (N1, N1A, N2, and N2A) from two L ligands. At the axial position are carboxylate atoms (O1 and O1A) from two oba2- ligands. The maximum and minimum bond angles for the Cd2+ ion are 180.00(10)° and 74.97(10)°, respectively, which slightly deviate from the angle of 180°/90° in a perfect octahedron. The bond lengths range from 0.224 8(3) to 0.246 3(3) nm, and more detailed selected bond distances and bond angles are presented in Table 2. As shown in Fig.2, four N atoms of two L ligands adopt a chelating μ1η1η1 mode to connect Cd atoms, and then two [Cd(L)2] moieties are linked by the oba2- ligand to form a 1D zigzag chain. Pairs of L ligands are located on the sides of the 1D chain. It is intriguing to note that the carboxylate oxygen atoms of the oba2- ligand are all deprotonated and take monodentate bridging coordination patterns. Further analysis of the crystal packing revealed hydrogen-bond interactions in carboxy-oxygen atoms and imidazole N atoms (Table 3), as well as π-π stacking interactions between the benzene ring of the oba2- ligand and the imidazole ring of the L ligand. The shortest centroid distance is 0.366 2(2) nm for the N1C-C18C-N4C-C19C-C20C and N2C-C15C-C16C-N3C-C17C rings (Symmetry code: C: 2-x, -y, -1-z), with the vertical distance being -0.326 18(16) nm and the dihedral angle being 2.6(2)°. Undoubtedly, these stabilize the structure of 1 and form a 2D supramolecular architecture (Fig.3).

    Figure 1

    Figure 1.  Coordination environment (at 30% probability level) of the Cd(Ⅱ) center in complex 1

    Symmetry codes: A: 3-x, -y, -1-z; B: 2-x, -y, -z.

    Figure 2

    Figure 2.  View of the 1D zigzag chain of complex 1

    Table 3

    Table 3.  Hydrogen bonds for complexes 1 and 2
    下载: 导出CSV
    D—H…A d(D—H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    1
    N3—H3…O1D 0.077(3) 0.222(3) 0.297 3(4) 165(3)
    N4—H4…O2D 0.081(5) 0.179(6) 0.258 9(5) 174(5)
    N7—H7…O5E 0.072(4) 0.199(4) 0.269 8(5) 170(4)
    N8—H8…O4E 0.083(4) 0.197(4) 0.277 5(4) 167(4)
    2
    N3—H3…O2C 0.087(3) 0.188(3) 0.273 7(3) 171(2)
    N4—H4…O1C 0.076(3) 0.193(3) 0.269 0(3) 177(4)
    N7—H7…O3A 0.080(3) 0.196(3) 0.275 9(3) 171(3)
    N8—H8…O4A 0.081(3) 0.193(3) 0.273 2(3) 170(3)
    Symmetry codes: D: -1+x, y, z; E: 1+x, y, z for 1; A: 2-x, 1-y, 1-z; C: 3/2-x, -1/2+y, 1/2-z for 2.

    Figure 3

    Figure 3.  View of the 2D supramolecular architecture of complex 1 formed by N—H…O hydrogen bonding and π-π interactions

    Complex 2 crystallizes in the monoclinic P21/n space group, with one Cd(Ⅱ) ion, one 4-nph2- anion, and two L ligands in its asymmetric unit (Fig.4). The six- coordinated Cd(Ⅱ) center is surrounded by two oxygen atoms (O1, O4) from one 4-nph2- anion and four nitrogen atoms (N1, N2, N5, and N6) from two different L ligands, adopting a distorted octahedral {CdO2N4} geometry. The Cd—O bond lengths are 0.230 03(16) and 0.238 26(16) nm, respectively, and the Cd—N bond distances are 0.233 4(2), 0.233 43(18), 0.232 98(19), and 0.232 1(2) nm, respectively. The O(N)—Cd—N(O) bond angles are in a range of 73.68(6)°-161.80(7)°, all of which are within the reasonable range of those reported for other six-coordinated Cd(Ⅱ) complexes[18-19]. In the polymeric structure of 2 (Fig.5), the 4-nph2- anion adopts the bridging-μ2 mode to connect the cadmium ion, whereas the L ligand adopts a chelting-μ2 mode to connect the metal ion. Similar to that of complex 1, there are persistent N—H…O hydrogen bonding interactions between the carboxylate oxygen atoms of the 4-nph2- ligand and the nitrogen atom of the L ligands (Table 3), which are usually significant in the synthesis of supramolecular architecture. Moreover, there are π-π interactions in 2 between the imidazole rings, and between the imidazole ring and benzene ring of 4-nph2- molecules. The centroid-to-centroid distances between adjacent rings are 0.371 17(14) nm for N5A-C15A-C16A-N7A-C17A and N6A-C18A-N8A-C19A-C20A (Symmetry code: A: 2-x, 1-y, 1-z) imidazole rings and 0.391 36(14) nm for the N6B-C18B-N8B-C19B-C20B imidazole ring and the C2B-C3B-C4B-C5B-C6B-C7B benzene ring (Symmetry code: B: 1+x, y, z). The dihedral angles are 6.49(14)°and 16.88(12)°, respectively. Therefore, through hydrogen bonds and π-π interactions, 2 is further expanded into a 2D supramolecular network framework (Fig.5).

    Figure 4

    Figure 4.  Coordination environment of complex 2 with displacement ellipsoids at the 30% probability level

    Figure 5

    Figure 5.  View of the 2D supramolecular architecture of complex 2 formed by N—H…O hydrogen bonding and π-π interactions

    The solid-state IR spectrum of complexes 1 and 2 was illustrated in a region of 4 000-400 cm-1 (Fig.S2 and S3). A strong and wide peak at 3 124 cm-1 was observed, which is characteristic of the stretching vibrations of the N—H bond of the L ligand. The strong peaks at 1 384, 1 596 cm-1 (1) and 1 346, 1 573 cm-1 (2) could be ascribed to the asymmetric and symmetric vibrations of the carboxylate groups of the oba2- anions[20-21]. The C—N stretching vibrations of the L ligand were observed at 1 162 cm-1 (1) and 1 211 (2) cm-1 [22].

    To substantiate the phase purity of complexes 1 and 2, their PXRD analysis was performed before their photoluminescent properties were measured. The experimental PXRD patterns were in excellent accordance with the corresponding simulated ones (Fig.6) except for the variation in relative intensity because of the preferred orientations of the crystals.

    Figure 6

    Figure 6.  PXRD patterns of complexes 1 and 2

    Complexes 1 and 2 are stable under environmental conditions, and the thermal stability was explored by thermogravimetric analysis (TGA). As depicted in Fig.S4, the TG curve of 1 showed that the complex was stable up to 240 ℃, and then began to lose weight above 240 ℃. Continuous decomposition, attributed to the release of the water molecule and the L ligand, was observed within a temperature range of 240-375 ℃, and the oba2- ligand commenced to decompose at 376 ℃. The TG curve of 2 indicated no obvious weight loss from 50 to 300 ℃, then the curve presented a platform and the framework started to decompose at 300 ℃, as shown in Fig.S5.

    In this work, solid-state luminescent properties were investigated for complexes 1 and 2 (Fig.7), along with H2oba, 4-H2nph, and L ligands. The free H2oba, 4-H2nph, and L ligands exhibited emissions at 275, 440, and 435 nm, respectively, upon excitation at 335 nm. These emissions of the free ligands are likely attributable to the π*→n or π*→π transitions[23-27]. The emission peaks of 1 and 2 occurred at 393 and 396 nm, respectively [λex=298 nm (1), λex=308 nm (2)]. Since the d10 configuration of Cd(Ⅱ) is difficult to oxidize or reduce, the emissions are neither metal-to- ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT). The emission bands of 1 and 2 could be assigned to the emission of ligand-to-ligand charge transfer[28-29].

    Figure 7

    Figure 7.  Solid-state photoluminescent spectra of complexes 1 and 2 at room temperature

    In this work, all calculations were performed on the Gaussian16 program with the parameters of the molecular structure from the experimental data of complexes 1 and 2. Natural bond orbital (NBO) analysis[30-32] was carried out by density functional theory with the B3LYP[33], hybrid functional, and the LANL2DZ basis set[34].

    Table 4 presents the data for the selected natural atomic charges, natural electron configuration, Wiberg bond orders, and NBO bond orders (in atomic units) of complex 1. It is indicated that the electronic configurations of Cd ion, N, and O atoms are 5s0.294d9.985p0.33, 2s1.37-1.382p4.17-4.18, and 2s1.682p5.11-5.12, respectively. Based on the above results, it can be concluded that the coordination of the Cd1 ion with N and O atoms primarily occurs through the 4d, 5s, and 5p orbitals. Specifically, N atoms form coordination bonds with the Cd1 ion using their 2s and 2p orbitals. All O atoms also supply electrons of 2s and 2p to Cd ions and form coordination bonds. Additionally, the Cd1 ion obtained some electrons from the N atoms of the L ligand and the O atoms of the H2oba ligand. According to valence-bond theory, the atomic net charge distribution and the NBO bond orders (Table 4) indicate a clear covalent interaction between the coordinated atoms and the Cd ion. Furthermore, the differences in NBO bond orders for Cd—O and Cd—N bonds lead to variations in their bond lengths[30-32]. This observation aligns well with the X-ray crystal structural data of 1. In summary, the information suggests that there is a covalent interaction between the coordinated atoms (N and O) and the Cd ion in 1. The NBO bond orders and the resulting bond lengths support this conclusion, demonstrating consistency with the X-ray crystal structural data of 1.

    Table 4

    Table 4.  Natural atomic charges, natural valence electron configurations, Wiberg bond indexes, and NBO bond orders for complexes 1 and 2
    下载: 导出CSV
    Atom Net charge Electron configuration Bond Wiberg bond index NBO bond order / a.u.
    1
    Cd1 1.419 86 [core]5s0.294d9.985p0.33
    O1 -0.801 98 [core]2s1.682p5.12 Cd1—O1 0.177 0 0.192 7
    O1A -0.800 58 [core]2s1.682p5.11 Cd1—O1A 0.176 1 0.192 2
    N1 -0.576 77 [core]2s1.382p4.18 Cd1—N1 0.140 8 0.209 9
    N1A -0.574 77 [core]2s1.382p4.18 Cd1—N1A 0.140 0 0.209 2
    N2 -0.558 44 [core]2s1.372p4.17 Cd1—N2 0.135 4 0.198 6
    N2A -0.557 44 [core]2s1.372p4.17 Cd1—N2A 0.135 2 0.198 4
    2
    Cd1 1.399 21 [core]5s0.294d9.985p0.32
    O1 -0.838 02 [core]2s1.702p5.13 Cd—O1 0.229 7 0.233 9
    O4 -0.809 32 [core]2s1.692p5.11 Cd—O4 0.196 0 0.209 8
    N1 -0.544 06 [core]2s1.382p4.15 Cd—N1 0.129 4 0.191 9
    N2 -0.548 62 [core]2s1.372p4.16 Cd—N2 0.136 1 0.198 3
    N5 -0.548 41 [core]2s1.382p4.15 Cd—N5 0.140 3 0.201 1
    N6 -0.549 67 [core]2s1.372p4.16 Cd—N6 0.138 1 0.200 5

    As shown in Fig.8, the LUMO and HOMO of complex 1 are primarily composed of the H2oba ligand. This suggests the possibility of intraligand charge transfer (ILCT) within the complex, as indicated by certain contours in the molecular orbitals.

    Figure 8

    Figure 8.  Frontier molecular orbitals of complex 1

    The selected natural atomic charges, natural electron configuration, Wiberg bond, and NBO bond orders (a.u.) for complex 2 are shown in Table 4. It is indicated that the electronic configurations of Cd ion, N, and O atoms are 5s0.294d9.985p0.32, 2s1.37-1.382p4.15-4.16, and 2s1.69-1.702p4.15-4.16, respectively. Based on the above results, one can conclude that the Cd ion coordination with N and O atoms is mainly on 4d, 5s, and 5p orbitals. N atoms form coordination bonds with Cd ions using 2s and 2p orbitals. All O atoms supply electrons of 2s and 2p to Cd ion and form the coordination bonds. Therefore, the Cd ion obtained some electrons from N atoms of the L ligand and O atoms of the 4-H2nph ligand. Thus, according to valence-bond theory, the atomic net charge distribution and the NBO bond orders of 2 (Table 4) show the obvious covalent interaction between the coordinated atoms and Cd ions. The differences in the NBO bond orders for Cd—O and Cd—N bonds make their bond lengths different[30-32], which is in good agreement with the X-ray crystal structural data of 2.

    As can be seen from Fig.9, the LUMO is mainly composed of the L ligand, whereas the HOMO mainly consists of the 4-H2nph ligand. So, LLCT may be inferred from some contours of the molecular orbital of complex 2.

    Figure 9

    Figure 9.  Frontier molecular orbitals of complex 2

    In summary, we have developed a synthetic strategy for 2D coordination polymers {[Cd(oba)(L)2]·H2O}n (1) and [Cd(4-nph)(L)2]n (2) by employing a flexible/rigid dicarboxylate ligand, an L ligand, and a transition metal Cd(Ⅱ) ion. In complex 1, the four N atoms of the L ligand adopt a chelating μ1η1η1 mode to link adjacent Cd atoms, and the oba2- ligand links [Cd(L)2] moieties to form a 1D zigzag chain. In complex 2, the six-coordinated Cd(Ⅱ) center is surrounded by two oxygen atoms (O1, O4) from one 4-nph2- anion and four nitrogen atoms (N1, N2, N5, and N6) from two different L ligands, adopting a distorted octahedral {CdO2N4} geometry. Moreover, the 2D supramolecular architectures are self-assembled through N—H…O hydrogen bonds and π-π stacking interactions. Additionally, complexes 1 and 2 exhibit thermal stabilities and photoluminescent properties in the solid state. Meanwhile, the quantum-chemical calculations of 1 and 2 signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ) ions.

    Supporting information is available at http://www.wjhxxb.cn


    1. [1]

      ZHANG L W, ZHANG Y, CUI Y F, YU M, DONG W K. Heterobimetallic [NiLn] (Ln=Sm and Tb) N2O4-donor coordination polymers: Syntheses, crystal structures and fluorescence properties[J]. Inorg. Chim. Acta, 2020, 506: 119534 doi: 10.1016/j.ica.2020.119534

    2. [2]

      WANG Y, JIANG Y L, LIU Q Y, TAN Y X, WEI J J, ZHANG J. A series of three-dimensional lanthanide(Ⅲ) coordination polymers of 2, 5-dihydroxy-1, 4-benzenedicarboxylic acid based on dinuclear lanthanide units[J]. CrystEngComm, 2011, 13(15): 4981-4987 doi: 10.1039/c1ce05069a

    3. [3]

      李秀梅, 黄艳菊, 刘博, 潘亚茹. 两个Ni(Ⅱ)配位聚合物的合成、晶体结构和量子化学计算[J]. 无机化学学报, 2024, 40(10): 2031-2039 doi: 10.11862/CJIC.20240109LI X M, HUANG Y J, LIU B, PAN Y R. Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers[J]. Chinese J. Inorg. Chem., 2024, 40(10): 2031-2039 doi: 10.11862/CJIC.20240109

    4. [4]

      WANG S, HUANG R Q, LI W, LV Y J, HAN G C, WEI R Z, LIU Z. Synthesis, structure and properties of two complexes based on N and S heterocyclic dicarboxylic acid ligands[J]. Mol. Cryst. Liq. Cryst., 2022, 746(1): 110-119 doi: 10.1080/15421406.2022.2081044

    5. [5]

      LI X L, YANG Z Q, ZHU J P. Preparation of LiNi1/3Co1/3Mn1/3O2 using NiCoMn-MOF as precursor[J]. J. Electron. Mater., 2021, 50(11): 6114-6120 doi: 10.1007/s11664-021-09140-y

    6. [6]

      YANG T T, GUO B S, DU W Y, ASLAM M K, TAO M L, ZHONG W, CHEN Y M, BAO S J. ZHANG X, XU M W. Design and construction of sodium polysulfides defense system for room-temperature Na-S battery[J]. Adv. Sci., 2019, 6(23): 1901557 doi: 10.1002/advs.201901557

    7. [7]

      LI S L, WANG B Q, LIU G C, LI X H, SUN C, ZHANG Z, WANG X L. Achieving ultra-trace analysis and multi-light driven photodegradation toward phenolic derivatives via a bifunctional catalyst derived from a Cu(Ⅰ)-complex-modified polyoxometalate[J]. Inorg. Chem. Front., 2024, 11(5): 1561-1572 doi: 10.1039/D3QI02513F

    8. [8]

      WANG H L, WANG X, LI M M, FENG J D. Two new Zn(Ⅱ) coordination polymers incorporating 2-(2, 6-dichlorophenyl)-1H-imidazo[4, 5-f][1, 10]phenanthroline: Synthesis and structure[J]. Main Group Met. Chem., 2024, 47: 20230033 doi: 10.1515/mgmc-2023-0033

    9. [9]

      GAO Q, XU J, BU X H. Recent advances about metal-organic frameworks in the removal of pollutants from wastewater[J]. Coord. Chem. Rev., 2019, 378: 17-31 doi: 10.1016/j.ccr.2018.03.015

    10. [10]

      LIANG C X, LIU Z, LIANG Q Q, HAN G C, HAN J X, ZHANG S F, FENG X Z. Synthesis of 2-aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl[J]. J. Mol. Liq., 2019, 277: 330-340 doi: 10.1016/j.molliq.2018.12.095

    11. [11]

      WEI W C, LIU Z, WEI R Z, LIANG C X, FENG X Z, Han G C. Synthesis, crystal structure and anticorrosion performance of Zn(Ⅱ) and Ni(Ⅱ) complexes[J]. J. Mol. Struct., 2021, 1228: 129452 doi: 10.1016/j.molstruc.2020.129452

    12. [12]

      WEI R Z, LIU Z, WEI W C, LIANG C X, HAN G C, ZHAN L. Synthesis, crystal structure and characterization of two cobalt(Ⅱ) complexes based on pyridine carboxylic acid ligands[J]. Z. Anorg. Allg. Chem., 2022, 648(9): e202000418 doi: 10.1002/zaac.202000418

    13. [13]

      ZHAN P Y, FENG W Z, LI X M, LIU B. A new pyridine-3, 4-dicarboxylic acid bridged zinc(Ⅱ) coordination complex: Crystal structure, quantum chemistry, and luminescence property[J]. Chin. J. Struct. Chem., 2021, 40(8): 1039-1046

    14. [14]

      HAMIDI Z, MOSAVIAN S Y, SABBAGHI N, ZARCHI M A K, NOROOZIFAR M. Cross-linked poly(N-alkyl-4-vinylpyridinium) iodides as new eco-friendly inhibitors for corrosion study of St-37 steel in 1 M H2SO4[J]. Iran. Polym. J., 2020, 29(3): 225-239 doi: 10.1007/s13726-020-00787-8

    15. [15]

      LUN H J, LI Y M, ZHANG X D, YANG J H, XIAO C Y, XU Y Q, LI J R. Different dimensional coordination polymers with 4, 4′-oxybis(benzoate): Syntheses, structures and properties[J]. J. Solid State Chem., 2014, 215: 277-283 doi: 10.1016/j.jssc.2014.04.016

    16. [16]

      LI G F, QI X F, LI X M, JI J Y, NIU Y L, WANG Q W. Synthesis, crystal structure and theoretical calculations of a zinc(Ⅱ) coordination polymer assembled by 4, 4′-oxydibenzoic acid and 1, 3-bis(imidazol-1-ylmethyl)-benzene ligands[J]. J. Inorg. Organomet Polym., 2015, 25: 576-582 doi: 10.1007/s10904-014-0145-6

    17. [17]

      LI X M, WANG Z T, VALTCHEV V, FANG Q R, PAN Y R. Syntheses, crystal structures and theoretical calculations of two nickel, zinc coordination polymers with 4-nitrophthalic acid and bis(imidazol) ligands[J]. J. Inorg. Organomet. Polym., 2020, 30: 477-485 doi: 10.1007/s10904-019-01206-z

    18. [18]

      李秀梅, 潘亚茹, 刘博, 周实. 两个由双咪唑基配体构筑的镉配合物的合成、晶体结构及理论计算[J]. 无机化学学报, 2019, 35(7): 1275-1282LI X M, PAN Y R, LIU B, ZHOU S. Syntheses, crystal structures and theoretical calculations of two cadmium(Ⅱ) complexes assembled by bis(imidazol) ligands[J]. Chinese J. Inorg. Chem., 2019, 35(7): 1275-1282

    19. [19]

      吕莹, 李秀梅, 黄艳菊, 刘博, 周实. 基于琥珀酸配体的锌/镉配合物的合成、结构及性质[J]. 无机化学学报, 2022, 38(12): 2511-2520 doi: 10.11862/CJIC.2022.246LÜ Y, LI X M, HUANG Y J, LIU B, ZHOU S. Synthesis, structure and properties of zinc/cadmium complexes based on succinic acid ligands[J]. Chinese J. Inorg. Chem., 2022, 38(12): 2511-2520 doi: 10.11862/CJIC.2022.246

    20. [20]

      YANG L, WANG F, AUPHEDEOUS D Y, FENG C L. Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels[J]. Nanoscale, 2019, 11(30): 14210-14215 doi: 10.1039/C9NR05033G

    21. [21]

      WANG X, MU B, LIN H Y, LIU G C. Three new two-dimensional metal-organic coordination polymers derived from bis(pyridinecarboxamide)-1, 4-benzene ligands and 1, 3-benzenedicarboxylate: Syntheses and electrochemical property[J]. J. Organomet. Chem., 2011, 696(11/12): 2313-2321

    22. [22]

      DOLENSKY B, KONVALINKA R, JAKUBEK M, KRAL V. Identification of intramolecular hydrogen bonds as the origin of malfunctioning of multitopic receptors[J]. J. Mol. Struct., 2013, 1035: 124-128 doi: 10.1016/j.molstruc.2012.09.040

    23. [23]

      MOHAMED G G, EL-GAMEL N E A. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(Ⅱ), Fe(Ⅲ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) with glycine and DL-phenylalanine[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2004, 60: 3141-3154 doi: 10.1016/j.saa.2004.01.035

    24. [24]

      DONG M M, HE L L, FAN Y J, ZANG S Q, HOU H W, MAK T C W. Seven copper coordination polymers based on 5-iodo-isophthalic acid: Halogen-related bonding and N-donor auxiliary ligands modulating effect[J]. Cryst. Growth Des., 2013, 13(8): 3353-3364 doi: 10.1021/cg400033s

    25. [25]

      SHI Z Q, LI Y Z, GUO Z J, ZHENG H G. Six new 2D or 3D metal- organic frameworks based on bithiophene-containing ligand and dicarboxylates: Syntheses, structures, and properties[J]. Cryst. Growth Des., 2013, 13(7): 3078-3086 doi: 10.1021/cg400490y

    26. [26]

      GLASSON C R K, MEEHAN G V. MOTTI C A, CLEGG J K, TRUNER P, JENSEN P, LINDOY L F. New nickel(Ⅱ) and iron(Ⅱ) helicates and tetrahedra derived from expanded quaterpyridines[J]. Dalton Trans., 2011, 40: 10481-10490 doi: 10.1039/c1dt10667h

    27. [27]

      PANDEY S, DAS P P, SINGH A K, MUKHERJEE R. Cobalt(Ⅱ), nickel(Ⅱ) and copper(Ⅱ) complexes of a hexadentate pyridine amide ligand: Effect of donor atom (ether vs. thioether) on coordination geometry, spin-state of cobalt and M-M redox potential[J]. Dalton Trans., 2011, 40: 10758-10768 doi: 10.1039/c1dt10661a

    28. [28]

      MUKHOPADHYAY U, BERNAL I. Self-assembled hexameric water clusters stabilized by a cyano-bridged trimetallic complex[J]. Cryst. Growth Des., 2005, 5(5): 1687-1689 doi: 10.1021/cg0501940

    29. [29]

      LI G L, LIU G Z, HUANG L L, LI L, ZHANG X. Ancillary ligand-mediated syntheses, structures and fluorescence of three Zn/Cd(Ⅱ) coordination polymers based on nitrobenzene dicarboxylate[J]. J. Inorg. Organomet. Polym., 2014, 24(3): 617-623 doi: 10.1007/s10904-014-0024-1

    30. [30]

      REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem. Rev., 1988, 88(6): 899-926 doi: 10.1021/cr00088a005

    31. [31]

      陈钦, 胡耀元, 倪良, 姚加, 王蕾, 蒋银花, 张文莉. 以2, 2′-联吡啶-4, 4′-二甲酸和2-甲基吡嗪[3, 2-f∶2′, 3′-h]喹喔啉为配体的三维锰(Ⅱ)配位聚合物的合成、晶体结构和荧光性质[J]. 无机化学学报, 2014, 30(6): 1481-1488CHEN Q, HU Y Y, NI L, YAO J, WANG L, JIANG Y H, ZHANG W L. Synthesis, crystal structures and fluorescent property of a 3D manganese(Ⅱ) coordination polymer with 2, 2′-bipyridine-4, 4′-dicarboxylic acid and 2-methyldipyrido [3, 2-f∶2′, 3′-h]quinoxaline[J]. Chinese J. Inorg. Chem., 2014, 30(6): 1481-1488

    32. [32]

      郭彩红, 李海宇, 李俊, 贾建峰, 武海顺. 过渡金属铁配合物Fe(CO)5-x(PR3)x的结构与性质的理论研究[J]. 无机化学学报, 2017, 33(7): 1187-1195GUO C H, LI H N, LI J, JIA J F, WU H S. Theoretical study on structure and property of iron carbonyl derivatives Fe(CO)5-x(PR3)x[J]. Chinese J. Inorg. Chem., 2017, 33(7): 1187-1195

    33. [33]

      LEE C T, YANG W T, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37(2): 785 doi: 10.1103/PhysRevB.37.785

    34. [34]

      DUNNING T H, HAY P J. Gaussian basis sets for molecular calculations[C]//Schaefer H F. Methods of electronic structure theory. New York: Plenum Press, 1977: 1-28

  • Figure 1  Coordination environment (at 30% probability level) of the Cd(Ⅱ) center in complex 1

    Symmetry codes: A: 3-x, -y, -1-z; B: 2-x, -y, -z.

    Figure 2  View of the 1D zigzag chain of complex 1

    Figure 3  View of the 2D supramolecular architecture of complex 1 formed by N—H…O hydrogen bonding and π-π interactions

    Figure 4  Coordination environment of complex 2 with displacement ellipsoids at the 30% probability level

    Figure 5  View of the 2D supramolecular architecture of complex 2 formed by N—H…O hydrogen bonding and π-π interactions

    Figure 6  PXRD patterns of complexes 1 and 2

    Figure 7  Solid-state photoluminescent spectra of complexes 1 and 2 at room temperature

    Figure 8  Frontier molecular orbitals of complex 1

    Figure 9  Frontier molecular orbitals of complex 2

    Table 1.  Crystallography data and structure refinements for complexes 1 and 2

    Parameter 1 2
    Empirical formula C26H22CdN8O6 C20H15CdN9O6
    Formula weight 652.90 589.81
    Crystal system Monoclinic Monoclinic
    Space group P21/n P21/n
    a / nm 0.779 62(4) 0.851 59(8)
    b / nm 1.868 74(9) 1.264 60(13)
    c / nm 1.827 61(9) 2.110 4(2)
    β / (°) 98.864 0(10) 96.100(2)
    Volume / nm3 2.630 9(2) 2.259 8(4)
    Z 4 4
    Dc / (g·cm-3) 1.648 1.734
    GOF 1.041 1.069
    Reflection collected, unique 4 675, 3 126 5 465, 4 763
    Rint 0.038 0 0.031 2
    R [I > 2σ(I)] 0.036 1 0.027 8
    wR 0.083 1 0.060 0
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and bond angles (°) for complexes 1 and 2

    1
    Cd1—N1 0.224 8(3) Cd1—N1A 0.224 8(3) Cd1—N2 0.237 5(3)
    Cd1—N2A 0.237 5(3) Cd1—O1 0.245 0(3) Cd1—O1A 0.245 0(3)
    Cd2—N5 0.227 6(3) Cd2—N5B 0.227 6(3) Cd2—N6 0.233 0(3)
    Cd2—N6B 0.233 0(3) Cd2—O4 0.246 3(3) Cd2—O4B 0.246 3(3)
    N1A—Cd1—N1 180.0 N1—Cd1—N2A 104.94(11) N1A—Cd1—N2 104.94(11)
    N1—Cd1—N2 75.06(11) N2A—Cd1—N2 180.0 N1—Cd1—O1A 90.19(10)
    N2—Cd1—O1A 88.45(11) N1A—Cd1—O1 90.19(10) N1—Cd1—O1 89.81(10)
    N2A—Cd1—O1 88.45(11) N2—Cd1—O1 91.55(11) O1A—Cd1—O1 180.00(7)
    N5—Cd2—N5B 180.00(10) N5—Cd2—N6 74.97(10) N5B—Cd2—N6 105.03(10)
    N5—Cd2—N6B 105.03(10) N6—Cd2—N6B 180.00(11) N5—Cd2—O4B 90.22(10)
    N6—Cd2—O4B 83.70(10) N5—Cd2—O4 89.78(10) N5B—Cd2—O4 90.22(10)
    N6—Cd2—O4 96.30(10) N6B—Cd2—O4 83.70(10) O4B—Cd2—O4 180.00(14)
    2
    Cd1—O1 0.230 03(16) Cd1—O4 0.238 26(16) Cd1—N1 0.233 4(2)
    Cd1—N2 0.233 43(18) Cd1—N5 0.232 98(19) Cd1—N6 0.232 1(2)
    O1—Cd1—N6 161.80(7) O1—Cd1—N5 101.59(6) N6—Cd1—N5 74.37(7)
    O1—Cd1—N1 100.26(6) N6—Cd1—N1 87.76(7) N5—Cd1—N1 155.95(7)
    O1—Cd1—N2 86.62(6) N6—Cd1—N2 111.40(7) N5—Cd1—N2 97.65(7)
    N1—Cd1—N2 73.68(6) O1—Cd1—O4 76.81(6) N6—Cd1—O4 85.91(7)
    N5—Cd1—O4 96.26(6) N1—Cd1—O4 98.42(6) N2—Cd1—O4 160.20(6)
    Symmetry codes: A: 3-x, -y, -1-z; B: 2-x, -y, -z for 1.
    下载: 导出CSV

    Table 3.  Hydrogen bonds for complexes 1 and 2

    D—H…A d(D—H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    1
    N3—H3…O1D 0.077(3) 0.222(3) 0.297 3(4) 165(3)
    N4—H4…O2D 0.081(5) 0.179(6) 0.258 9(5) 174(5)
    N7—H7…O5E 0.072(4) 0.199(4) 0.269 8(5) 170(4)
    N8—H8…O4E 0.083(4) 0.197(4) 0.277 5(4) 167(4)
    2
    N3—H3…O2C 0.087(3) 0.188(3) 0.273 7(3) 171(2)
    N4—H4…O1C 0.076(3) 0.193(3) 0.269 0(3) 177(4)
    N7—H7…O3A 0.080(3) 0.196(3) 0.275 9(3) 171(3)
    N8—H8…O4A 0.081(3) 0.193(3) 0.273 2(3) 170(3)
    Symmetry codes: D: -1+x, y, z; E: 1+x, y, z for 1; A: 2-x, 1-y, 1-z; C: 3/2-x, -1/2+y, 1/2-z for 2.
    下载: 导出CSV

    Table 4.  Natural atomic charges, natural valence electron configurations, Wiberg bond indexes, and NBO bond orders for complexes 1 and 2

    Atom Net charge Electron configuration Bond Wiberg bond index NBO bond order / a.u.
    1
    Cd1 1.419 86 [core]5s0.294d9.985p0.33
    O1 -0.801 98 [core]2s1.682p5.12 Cd1—O1 0.177 0 0.192 7
    O1A -0.800 58 [core]2s1.682p5.11 Cd1—O1A 0.176 1 0.192 2
    N1 -0.576 77 [core]2s1.382p4.18 Cd1—N1 0.140 8 0.209 9
    N1A -0.574 77 [core]2s1.382p4.18 Cd1—N1A 0.140 0 0.209 2
    N2 -0.558 44 [core]2s1.372p4.17 Cd1—N2 0.135 4 0.198 6
    N2A -0.557 44 [core]2s1.372p4.17 Cd1—N2A 0.135 2 0.198 4
    2
    Cd1 1.399 21 [core]5s0.294d9.985p0.32
    O1 -0.838 02 [core]2s1.702p5.13 Cd—O1 0.229 7 0.233 9
    O4 -0.809 32 [core]2s1.692p5.11 Cd—O4 0.196 0 0.209 8
    N1 -0.544 06 [core]2s1.382p4.15 Cd—N1 0.129 4 0.191 9
    N2 -0.548 62 [core]2s1.372p4.16 Cd—N2 0.136 1 0.198 3
    N5 -0.548 41 [core]2s1.382p4.15 Cd—N5 0.140 3 0.201 1
    N6 -0.549 67 [core]2s1.372p4.16 Cd—N6 0.138 1 0.200 5
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  83
  • HTML全文浏览量:  24
文章相关
  • 发布日期:  2025-03-10
  • 收稿日期:  2024-07-19
  • 修回日期:  2024-09-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章