

基于多取代咪唑并[1,5-a]吡嗪骨架的三核铜配合物的原位合成、晶体结构及磁性表征
English
In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold
-
Key words:
- amide ligand
- / copper complex
- / single crystal structure
- / C—N coupling
- / magnetic characterization
-
0. Introduction
In situ metal ion/ligand reactions have been arousing more interest not only in the crystal engineering of coordination polymers but also in synthetic organic chemistry to prepare novel organic molecules/ligands that are less available or very difficult to obtain under conventional conditions[1-6]. It also acts as a bridge between coordination chemistry and synthetic organic chemistry to synthesize hybrid inorganic-organic complexes and to discover new synthetic organic reactions and understand their mechanisms[7]. Hydro(solvo)thermal in situ ligand synthesis has been well studied from C—C bond formation[8], hydroxylation[9], hydrolysis[10] to C—N coupling[11] under high temperatures. Copper- catalyzed C—N bond formation continues to be one of the major interests of organic synthesis due to its important role in the construction of heterocyclic motifs[12-17]. To the best of our knowledge, there are rare reported in situ ligand transformations involved in C—N coupling at normal conditions[18]. The imidazo[1, 5-a]pyrazine systems are an important type of fused N- heterocyclic compounds due to their well-related biological and pharmacological activities. The unit structure has been found in some natural products, drugs, and drug candidates. A series of functionalized imidazo[1, 5-a]pyrazine derivatives have been synthesized and their biological activities as inhibitors or receptors are investigated[19-20].
Polynuclear Cu(Ⅱ) complexes are well investigated for the study of copper-containing enzymes, catalysis, and magnetic properties[21-25]. Copper ion contains one unpaired electron (S=1/2) and exhibits various coordination modes. Pyrazine has a highly directive nature of the nitrogen lone pairs and attracts much attention in the construction of magnetic materials. Most pyrazine-bridged Cu complexes show antiferromagnetic properties, few examples are reported with ferromagnetic properties[26]. We are interested in exploring the pyrazine-based N, N′-bis(pyrazin-2-ylmethyl)pyrazine-2, 3-dicarboxamide (H2L1) ligand and its copper chemistry[27]. Here, a novel trinuclear copper complex [Cu3(L2)2(SO4)2(H2O)7)]·8H2O (1) (HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1, 5-a]pyrazine-8-carboxamide), was obtained by the reaction of H2L1 with CuSO4·5H2O in aqueous solution under room temperature. The most interesting part is that an unexpected multi-substituted imidazo[1, 5-a]pyrazine scaffold ligand HL2 was serendipitously synthesized involving a C—N bond formation of C(sp3)H2 with pyrazine N (Scheme 1).
Scheme 1
1. Experimental
1.1 Materials and measurements
All chemical reagents were commercially available and used as received. Elemental analyses for C, H, and N were performed on a Perkin-Elmer 240 analyzer. The FTIR spectra were recorded in KBr tablets in a range of 4 000-400 cm-1 on a PerkinElmer FTIR spectrometer. Magnetic susceptibility measurements for the sample were performed on a Quantum Design PPMS instrument operated under a field of 1 kOe.
1.2 Synthesis and characterization of H2L1
The ligand H2L1 was prepared by the condensation reaction of dimethyl ester pyrazine-2, 3-di-carboxylate with 2-aminomethylpyrazine and characterized by X-ray crystal analysis[26]. IR (KBr, cm-1): 3 199 (w), 3 043 (w), 1 671(s), 1 655 (s), 1 576(w), 1 555(w), 1 517(m), 1 482(w), 1 471(w), 1 420(w), 1 411(m), 1 400 (m), 1 327(m), 1 295(m), 1 250(w), 1 215(w), 1 181(w), 1 156(w), 1 130(w), 1 037(s), 1 026(m), 929(w), 864(w), 820(m), 788(m), 730(w), 650(m), 631(w), 546(w), 495(w), 463(m).
1.3 Synthesis of complex 1
The aqueous solution of CuSO4·5H2O (0.125 g, 0.5 mmol) was dropped to the solution of H2L1 (0.175 g, 0.5 mmol) in water, and the color changed from yellow to dark green. The mixed solution was kept stirring for 6 h. After the filtration, dark green filtrate was obtained. Slow evaporation of the filtrate for three weeks gave needle-like green crystals suitable for single-crystal X-ray analysis. Yield: 41% (based on CuSO4·5H2O). Anal. Calcd. for C32H52Cu3N16O27S2(%): C 28.52, H 3.89, N 16.63; Found(%): C 28.45, H 3.81, N 16.54. IR (KBr, cm-1): 3 433 (m), 3 092 (w), 2 821 (w), 1 710(s), 1 624(s), 1 578(m), 1 530(m), 1 468(w), 1 406(m), 1 371(m), 1 328(s), 1 282 (w), 1 237(w), 1 199(m), 1 175(m), 1 153(m), 1 079(w), 1 032(w), 805(w), 724(m), 602(w), 569(w), 558(w).
1.4 Structure determination
Single-crystal X-ray diffraction data were recorded on a Bruker D8 QUEST diffractometer with Mo Kα (λ=0.071 073 nm) radiation at 296(15) K. The crystal structure was solved by direct methods. Hydrogen atom positions were initially determined by geometry and refined by a riding model. All non-hydrogen atoms were refined anisotropically by least squares on F 2 using the SHELXTL 2014/7 program and OLEX2[28-29]. The details of single-crystal diffraction data and selected bond lengths and bond angles are listed in Table 1 and 2, respectively.
Table 1
Parameter 1 Parameter 1 Empirical formula C32H52Cu3N16O27S2 Dc / (g·cm-3) 1.784 Formula weight 1 347.67 μ / mm-1 1.451 Crystal system Monoclinic F(000) 2 764 Space group P21/c θ range / (°) 0.944-27.593 a / nm 2.166 4(3) Reflection collected, unique 1 1374, 6 468 (Rint=0.054 0) b / nm 1.316 51(19) Data, restraint, parameter 6 225, 39, 469 c / nm 1.766 0(2) Final R indices [I > 2σ(I)]* R1=0.054 0, wR2=0.123 0 β / (°) 95.053(2) R indices (all data) R1=0.116 5, wR2=0.149 1 V / nm3 5.017 2(12) Goodness of fit on F 2 1.013 Z 4 * R1=∑||Fo|-|Fc||/∑|Fo|, wR2=[∑w(Fo2-Fc2)2/∑w(Fo2)2]1/2. Table 2
Cu1—O1 0.235 0(3) Cu1—O5 0.226 8(3) Cu1—O6 0.199 2(3) Cu1—O7 0.199 0(3) Cu1—N1 0.204 4(3) Cu1—N9 0.203 7(4) Cu2—O8 0.192 9(3) Cu2—O12 0.232 7(4) Cu2—N2 0.202 3(3) Cu2—N3 0.192 6(3) Cu2—N4 0.202 3(3) Cu3—O15 0.193 9(3) Cu3—O16 0.257 9(5) Cu3—O17 0.246 4(5) Cu3—N10 0.201 1(4) Cu3—N11 0.192 2(3) Cu3—N12 0.201 3(3) O5—Cu1—O1 149.49(13) O6—Cu1—O1 90.32(13) O6—Cu1—O5 89.18(13) O6—Cu1—N1 90.61(14) O4—Cu1—N9 86.17(15) O7—Cu1—O1 87.71(13) O7—Cu1—O5 92.79(13) O7—Cu1—O6 177.99(14) O7—Cu1—N1 88.97(16) O7—Cu1—N9 94.15(14) N1—Cu1—O1 89.89(13) N1—Cu1—O5 90.11(13) N9—Cu1—O1 87.46(13) N9—Cu1—O5 92.52(13) N9—Cu1—N1 175.81(16) O8—Cu2—O12 90.02(14) O8—Cu2—N2 97.58(14) O8—Cu2—N4 100.03(13) N2—Cu2—O12 94.96(14) N2—Cu2—N4 160.35(14) N3—Cu2—O8 173.33(16) N5—Cu2—O12 96.60(15) N3—Cu2—N2 81.07(14) N3—Cu2—N3 80.43(14) N4—Cu2—O12 93.69(14) O15—Cu3—O16 83.43(14) O15—Cu3—O17 85.20(14) O15—Cu3—N10 100.17(14) O15—Cu3—N12 97.05(14) O17—Cu3—O16 164.45(13) N10—Cu3—O16 84.30(14) N10—Cu3—O17 87.31(15) N10—Cu3—N12 162.77(14) N11—Cu3—N15 176.21(16) N11—Cu3—O16 93.52(15) N11—Cu3—O17 98.21(15) N11—Cu3—N10 81.72(14) N11—Cu3—N12 81.05(14) N12—Cu3—O16 97.11(14) N12—Cu3—O17 94.78(15) 2. Results and discussion
2.1 Crystal structure
X-ray crystal analysis reveals that complex 1 crystallizes in the monoclinic system with space group P21/c, and the structure is shown in Fig.1. It consists of a trinuclear copper unit and eight free water molecules. The central Cu1 is bound to two N atoms from in situ transformed L2-, three O atoms from water molecules, and one O atom from a sulfate anion with a distorted octahedral geometry. The equatorial positions are occupied by two N atoms from the L2- ligand and two O atoms from water molecules, the axial positions are occupied by one O atom from a sulfate ion and one O atom from a water molecule, with much longer Cu—O bond distances (0.235 0 and 0.226 8 nm) than the equatorial ones (in a range of 0.199 0-0.204 4 nm). It also functions as a bridging unit to connect two monomeric copper units. The coordination mode of Cu2 and Cu3 is different. Each deprotonated L2- acts as a tridentate ligand, and the Cu2 ion is coordinated with three N atoms from L2-, one O atom from water, and one O atom from sulfate respectively, forming a distorted square pyramidal geometry. The equatorial positions are occupied by three N atoms from the L2- ligand and one O atom from a sulfate ion, and the axial positions are occupied by one O atom from a water molecule, with much longer Cu—O bond distances (0.232 7 nm) than the equatorial ones (in a range of 0.192 6-0.202 3 nm). Cu3 is coordinated with three N atoms from L2- and three O atoms from water molecules, forming a distorted octahedral geometry. The equatorial positions are occupied by three N atoms from the L2- ligand and one O atom from a water molecule, and the axial positions are occupied by two O atoms from water molecules, with much longer Cu—O bond distances (0.246 4 and 0.257 9 nm) than the equatorial ones (in a range of 0.192 2-0.201 3 nm). The three Cu ions are connected by two pyrazine rings from L2-, forming a linear geometry. The Cu1…Cu2 and Cu1…Cu3 distances are similar: 0.682 0 and 0.678 3 nm, respectively, with an average value of 0.680 2 nm. Further investigation of the crystal packing structure of complex 1 reveals that there are multiple hydrogen bonding interactions among water molecules and sulfate anions. In addition, there is strong intramolecular hydrogen bonding between carbonyl O and phenol O (O14—H…O13, O19—H…O18). As seen in Fig.2, the trinuclear copper monomers are connected by multiple hydrogen bonding interactions between the coordinated water molecule and free water molecule or the sulfate oxygen atoms and water molecule to form a 2D network. A perspective view of hydrogen-bonding connectivity patterns of water molecules, sulfate oxygen atoms, and the surrounding Cu can be seen in Fig.3. The selected details of hydrogen bonding are listed in Table 3.
Figure 1
Figure 2
Figure 3
Table 3
D—H…A d(D—H) / nm d(H…A) / nm d(H…A) / nm ∠DHA / (°) O14—H…O13 0.082 0.180 0.257 2(4) 155.6 O19—H…O18 0.082 0.180 0.258 2(4) 158.7 O5—H5A…O21ⅰ 0.089 0.186 0.272 7(5) 164.8 O5—H5B…O2ⅱ 0.087 0.181 0.268 1(5) 176.9 O6—H6A…O10ⅰ 0.082 0.194 0.270 1(5) 153.4 O6—H6B…O2 0.083 0.181 0.259 9(5) 159.4 O7—H7A…O10ⅲ 0.082 0.197 0.275 8(5) 162.3 O7—H7B…O26ⅲ 0.083 0.187 0.261 9(6) 150.4 O12—H12A…O3ⅲ 0.080 0.199 0.270 3(6) 147.8 O12—H12B…O20ⅲ 0.091 0.190 0.276 5(5) 157.1 O23—H23A…O11ⅰ 0.084 0.201 0.283 8(7) 165.1 O23—H23B…O22 0.085 0.196 0.272 4(6) 149.7 O25—H25A…O24 0.086 0.196 0.276 0(8) 164.3 O25—H25B…O4 0.085 0.198 0.281 2(9) 147.2 O27—H27A…O23 0.089 0.217 0.302 0(9) 160.0 O27—H27B…O3ⅱ 0.086 0.211 0.294 8(8) 165.8 Symmetry codes: ⅰ x, -y+1, z-1/2; ⅱ -x+1, y-1/2, -z+1/2; ⅲ -x+1, -y+1, -z+1. 2.2 FTIR analysis
As for the H2L1 ligand, the weak absorption peaks at 3 199 and 3 043 cm-1 are assigned to the C—H stretching vibration. Two strong absorption peaks at 1 671 and 1 655 cm-1 can be attributed to the C=O stretching vibration. Those 1 555 and 1 518 cm-1 peaks can be assigned to the C=N stretching vibration. As for complex 1, the broad absorption peak at 3 433 cm-1 is assigned to the O—H stretching vibration from H2O molecules. A strong band at 1 710 cm-1 can be attributed to the stretching vibration of one C=O stretching vibration. These features are in good agreement with single-crystal X-ray analysis.
2.3 Proposed reaction mechanism
A reaction mechanism is proposed for the in situ transformation from H2L1 to HL2 and the formation of complex 1 based on the structural analysis as shown in Scheme 2. The initial step involves the copper coordination with H2L1, upon the coordination of H2L1 to a copper ion, the properties (acidity, susceptibility to oxidation or reduction, electrophilic or nucleophilic character, etc.) can be significantly modified. In this case, the electrophilic copper center activates the carbonyl carbon and renders the amide-α-CH2 group acidic so that deprotonation and subsequent nucleophilic attack from the pyrazine N occurs. The electron-withdrawing pyrazine substituent also facilitates the release of this hydrogen atom. Followed by the cyclization of the five-membered imidazo[1, 5-a]pyrazine scaffold. The driving force of this C—N bond formation could be the replacement of a less basic amide on the α-CH2 carbon with a more basic one considering the electron-withdrawing nature of the pyrazine group.
Scheme 2
2.4 Magnetic property
The temperature dependence of the magnetic susceptibilities of complex 1 was measured on a crystal sample in a temperature range of 2-300 K at 1 kOe as shown in Fig.4, the observed χMT value of 1 at 300 K was 0.828 cm3·mol-1·K, which is significantly lower than expected for three isolated Cu(Ⅱ) ions (S=1/2, 1.125 cm3·mol-1·K for g=2.0). When further cooling, the χMT value increased to reach a maximum of 1.175 cm3·mol-1·K at around 26 K, this behavior reveals the presence of strong ferromagnetic interactions between the Cu(Ⅱ) ions. Then the χMT value decreased to 0.965 cm3·mol-1·K at 2 K most likely due to weak intermolecular antiferromagnetic interactions. A spin Hamiltonian appropriate to describe the exchange interactions in a linear copper(Ⅱ) trimer can be written as Eq.1, where J describes the interaction between the adjacent copper ions and J′ describes the interactions between the outer copper ions. Assuming J′=0, from the Hamiltonian, the following Eq.2 for the thermal dependence of the magnetic susceptibility are given.
$ H=-J(S_{1}S_{2}+S_{1}S_{3})-J′(S_{2}S_{3})$ (1) $ {\chi }_{\mathrm{M}}=\frac{N{g}^{2}{\beta }^{2}}{4k(T-\theta )\left[1+\mathrm{e}\mathrm{x}\mathrm{p}\left(\frac{J}{kT}\right)+10\mathrm{e}\mathrm{x}\mathrm{p}\left(\frac{3J}{2kT}\right)\right]/\left[1+\mathrm{e}\mathrm{x}\mathrm{p}\left(\frac{J}{kT}\right)+2\mathrm{e}\mathrm{x}\mathrm{p}\left(\frac{3J}{2kT}\right)\right]} $ (2) Figure 4
In Eq.2, we assume that the exchange integrals between the adjacent copper ions are the same and the integral between Cu2 and Cu3 is zero. The Weiss constant θ is introduced to consider the decrease in the magnetic moments at low temperature and the other symbols have their usual meaning. The best fitting for the experimental data gave J=94.03 cm-3, θ=-0.45 K, g=1.60. The fitting results confirm the predominant ferromagnetic coupling in the adjacent Cu ions and weak antiferromagnetic interactions among the intertrimers. In comparison with other reported Cu-μ-pyz-Cu complexes, the coordination geometry of the adjacent Cu can be assigned as an equatorial-equatorial (eq-eq) combination of the two nitrogen lone pairs[30-31]. To our knowledge, it is the first reported ferromagnetic complex in the eq-eq category of pyz-bridged Cu complexes.
3. Conclusions
A novel trinuclear Cu(Ⅱ) complex [Cu3(L2)2(SO4)2(H2O)7)]·8H2O has been serendipitously synthesized with in situ transformed HL2 ligand from the H2L1 proligand and characterized by IR, single-crystal X-ray analysis and magnetic measurements. A possible in situ ligand transformation mechanism is proposed based on the structural analysis. A ferromagnetic coupling between the adjacent Cu(Ⅱ) ions was observed. It is the first reported ferromagnetic complex in the eq-eq category of pyz-bridged Cu complexes.
-
-
[1]
CHEN X M, TONG M L. Solvothermal in-situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry[J]. Acc. Chem. Res., 2007, 40(2): 162-170 doi: 10.1021/ar068084p
-
[2]
ZHAO H, QU Z R, YE H Y, XIONG R G. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties[J]. Chem. Soc. Rev., 2008, 37(1): 84-100 doi: 10.1039/B616738C
-
[3]
ZHANG X M. Hydro(solvo)thermal in situ ligand syntheses[J]. Coord. Chem. Rev., 2005, 249(11/12): 1201-1219
-
[4]
ZHU H B, GOU S H. In situ construction of metal-organic sulfur-containing heterocycle frameworks[J]. Coord. Chem. Rev., 2011, 255(1/2): 318-338
-
[5]
KONG X J, HE T, ZHANG Y Z, WU X Q, WANG S N, XU M M, SI G R, LI J R. Constructing new metal-organic frameworks with complicated ligands from "one-pot" in situ reactions[J]. Chem. Sci., 2019, 10(14): 3949-3955 doi: 10.1039/C9SC00178F
-
[6]
MONDAL M, GHOSH S, MAITY S, GIRI S, GHOSH A. In situ transformation of a tridentate to a tetradentate unsymmetric Schiff base ligand via deaminative coupling in Ni(Ⅱ) complexes: crystal structures, magnetic properties and catecholase activity study[J]. Inorg. Chem. Front., 2020, 7(1): 247-259 doi: 10.1039/C9QI00975B
-
[7]
ZHANG J P, CHEN X M. Crystal engineering of binary metal imidazolate and triazolate frameworks[J]. Chem. Commun., 2006(16): 1689-1699 doi: 10.1039/b516367f
-
[8]
LI G B, LIU J M, YUZ Q, WANG W, SU C Y. Assembly of a 1D coordination polymer through in situ formation of a new ligand by double C—C coupling on CHCl3 under solvothermal conditions[J]. Inorg. Chem., 2009, 48(18): 8659-8661 doi: 10.1021/ic9011263
-
[9]
LIU J L, CHEN Y C, LI Q W, GOMEZ C S, ARAVENA D, RUIZ E, LIN W Q, LENG J D, TONG M L. Two 3d-4f nanomagnets formed via a two-step in situ reaction of picolinaldehyde[J]. Chem. Commun., 2013, 49(58): 6549-6551 doi: 10.1039/c3cc43200a
-
[10]
SUN D, WEI Z H, YANG C F, WANG D F, ZHANG N, HUANG R B, ZHENG L S. pH-dependent Ag(Ⅰ) coordination architectures constructed from 4-cyanopyridine and phthalic acid: From discrete structure to 2D sheet[J]. CrystEngComm, 2011, 13(5): 1591-1601 doi: 10.1039/C0CE00539H
-
[11]
KANOO P, HALDAR R, CYRIAC S T, MAJI T K. Coordination driven axial chirality in a microporous solid assembled from an achiral linker via in situ C—N coupling[J]. Chem. Commun., 2011, 47(39): 11038-11040 doi: 10.1039/c1cc13877d
-
[12]
GUO X X, GU D W, WU Z, ZHANG W. Copper-catalyzed C—H functionalization reactions: Efficient synthesis of heterocycles[J]. Chem. Rev., 2015, 115(3): 1622-1651 doi: 10.1021/cr500410y
-
[13]
JIANG H, LIN A, ZHU C, CHENG Y. Copper-catalyzed C—N bond formation through C—H/N—H activation: A novel approach to the synthesis of multisubstituted ureas[J]. Chem. Commun., 2013, 49(8): 819-821 doi: 10.1039/C2CC36417D
-
[14]
RASHEED S, RAO D N, DAS P. Copper-catalyzed inter- and intramolecular C—N bond formation: Synthesis of benzimidazole-fused heterocycles[J]. J. Org. Chem., 2015, 80(18): 9321-9327 doi: 10.1021/acs.joc.5b01396
-
[15]
ZHOU W, LIU Y, YANG Y, DENG G. Copper-catalyzed intramolecular direct amination of sp2 C—H bonds for the synthesis of N-aryl acridones[J]. Chem. Commun., 2012, 48(86): 10678-10680 doi: 10.1039/c2cc35425j
-
[16]
XIE Z, PENG J, ZHU Q. Copper-mediated C(sp3)—H amination in a multiple C—N bond-forming strategy for the synthesis of N-heterocycles[J]. Org. Chem. Front., 2016, 3(1): 82-86 doi: 10.1039/C5QO00313J
-
[17]
LI Z, WU S S, LUO Z, LIU W, FENG C T, MA S T. Copper-promoted double oxidative C—H amination cascade for the synthesis of imidazo[1, 5-a]quinolines[J]. J. Org. Chem., 2016, 81(10): 4386-4392 doi: 10.1021/acs.joc.6b00569
-
[18]
GHOSH A K, MAHAPATRA T S, CLERAC R, MATHONIERE C, BERTOLASI V, RAY D. Direct C—N coupling in an in situ ligand transformation and the self-assembly of a tetrametallic [Ni4Ⅱ] staircase[J]. Inorg. Chem., 2015, 54(11): 5136-5138 doi: 10.1021/acs.inorgchem.5b00411
-
[19]
MULVIHILL M J, JI Q S, COATE H R, COOKE A, DONG H, FENG L, FOREMAN K, ROSENFELD-FRANKLIN M, HONDA A, MAK G, MULVIHILL K M, NIGRO A I, O′CONNOR M, PIRRIT C, STEINIG A G, SIU K, STOLZ K M, SUN Y, TAVARES P A R, YAO Y, GIBSON N W. Novel 2-phenylquinolin-7-yl-derived imidazo[1, 5-a]pyrazines as potent insulin-like growth factor-I receptor (IGF-IR) inhibitors[J]. Bioorg. Med. Chem., 2008, 16(3): 1359-1375 doi: 10.1016/j.bmc.2007.10.061
-
[20]
MUKAIYAMA H, NISHIMURA T, KOBAYASHI S, OZAWA T, KOMATSU N Y, KIKUCHI S, OONOTA H, KUSAMA H. Synthesis and c-Src inhibitory activity of imidazo[1, 5-a]pyrazine derivatives as an agent for treatment of acute ischemic stroke[J]. Bioorg. Med. Chem., 2007, 15(2): 868-885 doi: 10.1016/j.bmc.2006.10.041
-
[21]
吴迪, 余柱, 高大志, 王欣, 沈旋, 朱敦如. 一个具有四方锥和三角双锥构型的线性混合桥连三核铜配合物[J]. 无机化学学报, 2015, 31(8): 1619-1625WU D, YU Z, GAO D Z, WANG X, SHEN X, ZHU D R. A mixed-bridged linear trinuclear copper(Ⅱ) complex containing both square pyramidal and trigonal bipyramidal configuration[J]. Chinese J. Inorg. Chem., 2015, 31(8): 1619-1625
-
[22]
丁玉洁, 王扬. 一种三核铜(Ⅱ)配合物{[Cu(HL)(EtOH)]2Cu}的合成及结构研究[J]. 无机化学学报, 2011, 27(7): 1411-1416DING Y J, WANG Y. Synthesis and structure of trinuclear CuⅡ complex {[Cu(HL)(EtOH)]2Cu}[J]. Chinese J. Inorg. Chem., 2011, 27(7): 1411-1416
-
[23]
吴浩, 赵晓雷, 钟润斌, 代耿耿, 吴伟娜, 王元. 吡嗪双腙配体铜配合物的合成、结构和DNA结合性质[J]. 无机化学学报, 2018, 34(7): 1917-1922WU HAO, ZHAO X L, ZHONG R B, DAI G G, WU W N, WANG Y. Synthesis, crystal structure and DNA interaction of a Cu(Ⅱ) complex with bis-hydrazone ligand bearing pyrazine unit[J]. Chinese J. Inorg. Chem., 2018, 34(7): 1917-1922
-
[24]
陈启昊, 井昭阳, 宋友. 零维到三维结构中三核铜自旋阻挫簇单元的磁构关系和反对称交换[J]. 无机化学学报, 2020, 36(4): 659-665 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20200409&journal_id=wjhxxbcnCHEN Q H, JING Z Y, SONG Y. Magnetostructural correlation and antisymmetric exchange of spin frustrated triangular [Cu3] in zero- dimensional and three-dimensional structure[J]. Chinese J. Inorg. Chem., 2020, 36(4): 659-665 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20200409&journal_id=wjhxxbcn
-
[25]
黎彧, 邹训重, 冯安生, 赵振宇. 由5-溴间苯二甲酸和2, 2′-联吡啶构筑的两个铜(Ⅱ)配合物的合成、晶体结构及磁性质[J]. 无机化学学报, 2020, 36(2): 345-351 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20200219&journal_id=wjhxxbcnLI Y, ZHONG X C, FENG A S, ZHAO Z Y. Synthesis, crystal structures and magnetic properties of two copper(Ⅱ) coordination compounds based on 5-bromoisophthalic acid and 2, 2′-bipyridine unit[J]. Chinese J. Inorg. Chem., 2020, 36(2): 345-351 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=20200219&journal_id=wjhxxbcn
-
[26]
BEOBIDE G, CASTILLO O, LUQUE A, GARCIA-COUCEIRO U, CARCIA-TERAN J P, ROMAN P. Supramolecular architectures and magnetic properties of coordination polymers based on pyrazinedicarboxylato ligands showing embedded water clusters[J]. Inorg. Chem., 2006, 45(14): 5367-5382
-
[27]
WANG Z D, YANG Y Sand LIN H Z. N, N′-bis(pyrazin-2-ylmethyl)pyrazine-2, 3-dicarb-oxamide[J]. IUCrData, 2016, 1: x161588
-
[28]
SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71: 3-8
-
[29]
DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009, 42(2): 339-341
-
[30]
KOYAMA N, ISHIDA T, NOGAMI T, KOGANE T. A pyrazine-bridged linear pentanuclear copper(Ⅱ) complex and related tri- and dinuclear complexes showing various coordination structures and magnetic couplings[J]. Polyhedron, 2008, 27(11): 2341-2348
-
[31]
WATANABE R, SHIMADA T, KOYAMA N, ISHIDA T, KOGANE T. Attempted synthesis of axial-equatorial pyrazine-bridged copper(Ⅱ) complexes towards homometallic ferromagnetic compounds[J]. Polyhedron, 2011, 30(18): 3165-3170
-
[1]
-
Table 1. Crystal data and structure refinement for complex 1
Parameter 1 Parameter 1 Empirical formula C32H52Cu3N16O27S2 Dc / (g·cm-3) 1.784 Formula weight 1 347.67 μ / mm-1 1.451 Crystal system Monoclinic F(000) 2 764 Space group P21/c θ range / (°) 0.944-27.593 a / nm 2.166 4(3) Reflection collected, unique 1 1374, 6 468 (Rint=0.054 0) b / nm 1.316 51(19) Data, restraint, parameter 6 225, 39, 469 c / nm 1.766 0(2) Final R indices [I > 2σ(I)]* R1=0.054 0, wR2=0.123 0 β / (°) 95.053(2) R indices (all data) R1=0.116 5, wR2=0.149 1 V / nm3 5.017 2(12) Goodness of fit on F 2 1.013 Z 4 * R1=∑||Fo|-|Fc||/∑|Fo|, wR2=[∑w(Fo2-Fc2)2/∑w(Fo2)2]1/2. Table 2. Selected bond distances (nm) and angles (°) for complex 1
Cu1—O1 0.235 0(3) Cu1—O5 0.226 8(3) Cu1—O6 0.199 2(3) Cu1—O7 0.199 0(3) Cu1—N1 0.204 4(3) Cu1—N9 0.203 7(4) Cu2—O8 0.192 9(3) Cu2—O12 0.232 7(4) Cu2—N2 0.202 3(3) Cu2—N3 0.192 6(3) Cu2—N4 0.202 3(3) Cu3—O15 0.193 9(3) Cu3—O16 0.257 9(5) Cu3—O17 0.246 4(5) Cu3—N10 0.201 1(4) Cu3—N11 0.192 2(3) Cu3—N12 0.201 3(3) O5—Cu1—O1 149.49(13) O6—Cu1—O1 90.32(13) O6—Cu1—O5 89.18(13) O6—Cu1—N1 90.61(14) O4—Cu1—N9 86.17(15) O7—Cu1—O1 87.71(13) O7—Cu1—O5 92.79(13) O7—Cu1—O6 177.99(14) O7—Cu1—N1 88.97(16) O7—Cu1—N9 94.15(14) N1—Cu1—O1 89.89(13) N1—Cu1—O5 90.11(13) N9—Cu1—O1 87.46(13) N9—Cu1—O5 92.52(13) N9—Cu1—N1 175.81(16) O8—Cu2—O12 90.02(14) O8—Cu2—N2 97.58(14) O8—Cu2—N4 100.03(13) N2—Cu2—O12 94.96(14) N2—Cu2—N4 160.35(14) N3—Cu2—O8 173.33(16) N5—Cu2—O12 96.60(15) N3—Cu2—N2 81.07(14) N3—Cu2—N3 80.43(14) N4—Cu2—O12 93.69(14) O15—Cu3—O16 83.43(14) O15—Cu3—O17 85.20(14) O15—Cu3—N10 100.17(14) O15—Cu3—N12 97.05(14) O17—Cu3—O16 164.45(13) N10—Cu3—O16 84.30(14) N10—Cu3—O17 87.31(15) N10—Cu3—N12 162.77(14) N11—Cu3—N15 176.21(16) N11—Cu3—O16 93.52(15) N11—Cu3—O17 98.21(15) N11—Cu3—N10 81.72(14) N11—Cu3—N12 81.05(14) N12—Cu3—O16 97.11(14) N12—Cu3—O17 94.78(15) Table 3. Selected hydrogen bond parameters for complex 1
D—H…A d(D—H) / nm d(H…A) / nm d(H…A) / nm ∠DHA / (°) O14—H…O13 0.082 0.180 0.257 2(4) 155.6 O19—H…O18 0.082 0.180 0.258 2(4) 158.7 O5—H5A…O21ⅰ 0.089 0.186 0.272 7(5) 164.8 O5—H5B…O2ⅱ 0.087 0.181 0.268 1(5) 176.9 O6—H6A…O10ⅰ 0.082 0.194 0.270 1(5) 153.4 O6—H6B…O2 0.083 0.181 0.259 9(5) 159.4 O7—H7A…O10ⅲ 0.082 0.197 0.275 8(5) 162.3 O7—H7B…O26ⅲ 0.083 0.187 0.261 9(6) 150.4 O12—H12A…O3ⅲ 0.080 0.199 0.270 3(6) 147.8 O12—H12B…O20ⅲ 0.091 0.190 0.276 5(5) 157.1 O23—H23A…O11ⅰ 0.084 0.201 0.283 8(7) 165.1 O23—H23B…O22 0.085 0.196 0.272 4(6) 149.7 O25—H25A…O24 0.086 0.196 0.276 0(8) 164.3 O25—H25B…O4 0.085 0.198 0.281 2(9) 147.2 O27—H27A…O23 0.089 0.217 0.302 0(9) 160.0 O27—H27B…O3ⅱ 0.086 0.211 0.294 8(8) 165.8 Symmetry codes: ⅰ x, -y+1, z-1/2; ⅱ -x+1, y-1/2, -z+1/2; ⅲ -x+1, -y+1, -z+1. -

计量
- PDF下载量: 0
- 文章访问数: 69
- HTML全文浏览量: 13