-
[1]
Johnson A C, Keller V, Dumont E, Sumpter J P. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers[J]. Sci. Total Environ.,
2015,511:747-755.
doi: 10.1016/j.scitotenv.2014.12.055
-
[2]
Wang B H, Yan B. A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine[J]. Talanta,
2020,208120438.
doi: 10.1016/j.talanta.2019.120438
-
[3]
Yang D D, Shi Y S, Xiao T, Fang Y H, Zheng X J. Three-dimensional viologen based lanthanide organic frameworks: Photochromism and fluorescence detection of quinolone antibiotics[J]. Inorg. Chem.,
2023,62:6084-6091.
doi: 10.1021/acs.inorgchem.3c00065
-
[4]
Segura P A, Takada H, Correa J A, El Saadi K, Koike T, Onwona A S, Ofosu A J, Sabi E B, Wasonga O V, Mghalu J M, Dos A M, Newman B, Weerts S, Yargeau V. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries[J]. Environ. Int.,
2015,80:89-97.
doi: 10.1016/j.envint.2015.04.001
-
[5]
Yan C X, Yang Y, Zhou J L, Liu M, Nie M H, Shi H, Gu L J. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment[J]. Environ. Pollut.,
2013,175:22-29.
doi: 10.1016/j.envpol.2012.12.008
-
[6]
Pan M, Chu L M. Fate of antibiotics in soil and their uptake by edible crops[J]. Sci. Total Environ.,
2017,599/600:500-512.
doi: 10.1016/j.scitotenv.2017.04.214
-
[7]
Lai Z Z, Yang X, Qin L, An J L, Wang Z, Sun X, Zhang M D. Synthesis, dye adsorption, and fluorescence sensing of antibiotics of a zincbased coordination polymer[J]. J. Solid State Chem.,
2021,300122278.
doi: 10.1016/j.jssc.2021.122278
-
[8]
Xiao J N, Liu M Y, Tian F L, Liu Z L. Stable Europium-based metalorganic frameworks for naked-eye ultrasensitive detecting fluoroquinolones antibiotics[J]. Inorg. Chem.,
2021,60:5282-5289.
doi: 10.1021/acs.inorgchem.1c00263
-
[9]
Jalal N R, Madrakian T, Afkhami A, Ghamsari M. Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples[J]. J. Electroanal. Chem.,
2019,833:281-289.
doi: 10.1016/j.jelechem.2018.12.004
-
[10]
Janusch F, Scherz G, Mohring S A, Hamscher G. Determination of fluoroquinolones in chicken feces-A new liquid liquid extraction method combined with LC MS/MS[J]. Environ. Toxicol. Pharmacol.,
2014,38(3):792-799.
doi: 10.1016/j.etap.2014.09.011
-
[11]
Vybíralová Z, Nobilis M, Zoulova J, Květina J, Petr P. High-performance liquid chromatographic determination of ciprofloxacin in plasma samples[J]. J. Pharm. Biomed. Anal.,
2005,37:851-858.
doi: 10.1016/j.jpba.2004.09.034
-
[12]
Pascual-Reguera M, Parras G P, Dıaz A M. Solid-phase UV spectrophotometric method for determination of ciprofloxacin[J]. Microchem J.,
2004,77:79-84.
doi: 10.1016/j.microc.2004.01.003
-
[13]
Xu X Y, Liu L H, Jia Z M, Shu Y. Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking sweeping technique[J]. Food Chem.,
2015,176:219-225.
doi: 10.1016/j.foodchem.2014.12.054
-
[14]
Dil E A, Ghaedi M, Asfaram A. Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: A novel strategy for preconcentration and determination of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization[J]. Talanta,
2019,202:526-530.
doi: 10.1016/j.talanta.2019.05.027
-
[15]
Mehrabi F, Vafaei A, Ghaedi M, Ghaedi A M, Dil E A, Asfaram A. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling[J]. Ultrason. Sonochem.,
2017,38:672-680.
doi: 10.1016/j.ultsonch.2016.08.012
-
[16]
Xu X Y, Yan B. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment[J]. Dalton Trans.,
2016,45:7078-7084.
doi: 10.1039/C6DT00361C
-
[17]
Lu Y, Yan B. A ratiometric fluorescent pH sensor based on nanoscale metal-organic frameworks (MOFs) modified by europium(Ⅲ)complexes[J]. Chem. Commun.,
2014,50:13323-13326.
doi: 10.1039/C4CC05508J
-
[18]
Abdelhamid H N, BermejoGómez A, Martín-Matute B, Zou X. A water stable lanthanide metal organic framework for fluorimetric detection of ferric ions and tryptophan[J]. Microchim. Acta,
2017,184:3363-3371.
doi: 10.1007/s00604-017-2306-0
-
[19]
Wang B, Yang Q, Guo C, Sun Y X, Xie L H, Li J R. Stable Zr (Ⅳ)-based metal organic frameworks with predesigned functionalized ligands for highly selective detection of Fe (Ⅲ) ions in water[J]. ACS Appl. Mater. Interfaces,
2017,9:10286-10295.
doi: 10.1021/acsami.7b00918
-
[20]
Li L, Zhu Y L, Zhou X H, Brites C D, Ananias D, Lin Z, Paz F A, Rocha J, Huang W, Carlos L D. Visible light excited luminescent thermometer based on single lanthanide organic frameworks[J]. Adv. Funct. Mater.,
2016,26:8677-8684.
doi: 10.1002/adfm.201603179
-
[21]
LIU L, WANG H J, WANG H T, LI Y. Crystal structure of a two dimensional Cd (Ⅱ) complex and its fluorescence recognition of p nitrophenol, tetracycline, 2, 6 dichloro 4 nitroaniline[J]. Chinese J. Inorg. Chem.,
2024,40(6):1180-1188.
doi: 10.11862/CJIC.20230489
-
[22]
ZHANG H, WANG J J, FAN G, TANG L, YUE E, BAI C, WANG X, ZHANG Y Q. A highly stable cadmium (Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol[J]. Chinese J. Inorg. Chem.,
2024,40(3):646-654.
doi: 10.11862/CJIC.20230291
-
[23]
Liu X X, Yang D D, Feng S S, Lu L P. Dual-function Cd (Ⅱ) coordination complexes as sensors for efficient detection of Zn2+ and Tb3+ ions[J]. J. Lumin.,
2022,252119426.
doi: 10.1016/j.jlumin.2022.119426
-
[24]
Liu J, Goetjen T A, Wang Q, Knapp J G, Wasson M C, Yang Y, Syed Z H, Delferro M, Notestein J M, Farha O K, Hup J T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization[J]. Chem. Soc. Rev.,
2022,51:1045-1097.
doi: 10.1039/D1CS00968K
-
[25]
Amooghin E A, Sanaeepur H, Luque R, Garcia H, Chen B L. Fluorinated metal-organic frameworks for gas separation[J]. Chem. Soc. Rev.,
2022,51:7427-7508.
doi: 10.1039/D2CS00442A
-
[26]
Jiang X L, Jiao Y E, Hou S L, Geng L C, Wang H Z, Zhao B. Green conversion of CO2 and propargylamines triggered by triply synergistic catalytic effects in metal-organic frameworks[J]. Angew. Chem. Int. Ed.,
2021,60:20417-20423.
doi: 10.1002/anie.202106773
-
[27]
Gu A L, Zhang Y X, Wu Z L, Cui H Y, Hu T D, Zhao B. Highly efficient conversion of propargylic alcohols and propargylic amines with CO2 activated by noble metal free catalyst Cu2O@ZIF-8[J]. Angew. Chem. Int. Ed.,
2022,61e202114817.
doi: 10.1002/anie.202114817
-
[28]
Huxford R C, DeKrafft K E, Boyle W S, Liu D M, Lin W B. Lipidcoated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells[J]. Chem. Sci.,
2012,3:198-204.
doi: 10.1039/C1SC00499A
-
[29]
Zeng N N, Ren L, Cui G H. Ultrasensitive fluorescence detection of norfloxacin in aqueous medium employing a 2D Zn (Ⅱ)-based coordination polymer[J]. CrystEngComm,
2022,24:931-935.
doi: 10.1039/D1CE01537K
-
[30]
Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. Highly waterstable Dye@Ln-MOFs for sensitive and selective detection toward antibiotics in water[J]. ACS Appl. Mater. Interfaces,
2019,11:21201-21210.
doi: 10.1021/acsami.9b05815