Citation: Dongdong YANG, Jianhua XUE, Yuanyu YANG, Meixia WU, Yujia BAI, Zongxuan WANG, Qi MA. Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266 shu

Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands

Figures(6)

  • Two coordination polymers were synthesized by hydrothermal reaction, namely, [Cd(H3cpbda)(2, 2'-bipy) (H2O)]n (1) and[Mn(H3cpbda)(phen)(H2O)]n (2), where H5cpbda=5, 5'-[(5-carboxy-1, 3-phenyl)bis(oxy)]triisophthalic acid, 2, 2'-bipy=2, 2'-bipyridine, phen=1, 10-phenanthroline. The two complexes were characterized by single-crystal X-ray diffraction, powder diffraction, infrared spectroscopy, and thermogravimetric analysis. Complexes 1 and 2 are "V"-shaped 1D chains, and the molecules form 2D (1) and 3D framework (2) structures through weak ππ stacking. Furthermore, complex 1 was dispersed in an aqueous solution and its fluorescence intensity demonstrated excellent stability. Complex 1 can specifically detect ciprofloxacin in urine with a detection limit of 1.91×10-8 mol·L-1.
  • 加载中
    1. [1]

      Johnson A C, Keller V, Dumont E, Sumpter J P. Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers[J]. Sci. Total Environ., 2015,511:747-755. doi: 10.1016/j.scitotenv.2014.12.055

    2. [2]

      Wang B H, Yan B. A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine[J]. Talanta, 2020,208120438. doi: 10.1016/j.talanta.2019.120438

    3. [3]

      Yang D D, Shi Y S, Xiao T, Fang Y H, Zheng X J. Three-dimensional viologen based lanthanide organic frameworks: Photochromism and fluorescence detection of quinolone antibiotics[J]. Inorg. Chem., 2023,62:6084-6091. doi: 10.1021/acs.inorgchem.3c00065

    4. [4]

      Segura P A, Takada H, Correa J A, El Saadi K, Koike T, Onwona A S, Ofosu A J, Sabi E B, Wasonga O V, Mghalu J M, Dos A M, Newman B, Weerts S, Yargeau V. Global occurrence of anti-infectives in contaminated surface waters: Impact of income inequality between countries[J]. Environ. Int., 2015,80:89-97. doi: 10.1016/j.envint.2015.04.001

    5. [5]

      Yan C X, Yang Y, Zhou J L, Liu M, Nie M H, Shi H, Gu L J. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment[J]. Environ. Pollut., 2013,175:22-29. doi: 10.1016/j.envpol.2012.12.008

    6. [6]

      Pan M, Chu L M. Fate of antibiotics in soil and their uptake by edible crops[J]. Sci. Total Environ., 2017,599/600:500-512. doi: 10.1016/j.scitotenv.2017.04.214

    7. [7]

      Lai Z Z, Yang X, Qin L, An J L, Wang Z, Sun X, Zhang M D. Synthesis, dye adsorption, and fluorescence sensing of antibiotics of a zincbased coordination polymer[J]. J. Solid State Chem., 2021,300122278. doi: 10.1016/j.jssc.2021.122278

    8. [8]

      Xiao J N, Liu M Y, Tian F L, Liu Z L. Stable Europium-based metalorganic frameworks for naked-eye ultrasensitive detecting fluoroquinolones antibiotics[J]. Inorg. Chem., 2021,60:5282-5289. doi: 10.1021/acs.inorgchem.1c00263

    9. [9]

      Jalal N R, Madrakian T, Afkhami A, Ghamsari M. Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples[J]. J. Electroanal. Chem., 2019,833:281-289. doi: 10.1016/j.jelechem.2018.12.004

    10. [10]

      Janusch F, Scherz G, Mohring S A, Hamscher G. Determination of fluoroquinolones in chicken feces-A new liquid liquid extraction method combined with LC MS/MS[J]. Environ. Toxicol. Pharmacol., 2014,38(3):792-799. doi: 10.1016/j.etap.2014.09.011

    11. [11]

      Vybíralová Z, Nobilis M, Zoulova J, Květina J, Petr P. High-performance liquid chromatographic determination of ciprofloxacin in plasma samples[J]. J. Pharm. Biomed. Anal., 2005,37:851-858. doi: 10.1016/j.jpba.2004.09.034

    12. [12]

      Pascual-Reguera M, Parras G P, Dıaz A M. Solid-phase UV spectrophotometric method for determination of ciprofloxacin[J]. Microchem J., 2004,77:79-84. doi: 10.1016/j.microc.2004.01.003

    13. [13]

      Xu X Y, Liu L H, Jia Z M, Shu Y. Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking sweeping technique[J]. Food Chem., 2015,176:219-225. doi: 10.1016/j.foodchem.2014.12.054

    14. [14]

      Dil E A, Ghaedi M, Asfaram A. Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: A novel strategy for preconcentration and determination of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization[J]. Talanta, 2019,202:526-530. doi: 10.1016/j.talanta.2019.05.027

    15. [15]

      Mehrabi F, Vafaei A, Ghaedi M, Ghaedi A M, Dil E A, Asfaram A. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling[J]. Ultrason. Sonochem., 2017,38:672-680. doi: 10.1016/j.ultsonch.2016.08.012

    16. [16]

      Xu X Y, Yan B. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment[J]. Dalton Trans., 2016,45:7078-7084. doi: 10.1039/C6DT00361C

    17. [17]

      Lu Y, Yan B. A ratiometric fluorescent pH sensor based on nanoscale metal-organic frameworks (MOFs) modified by europium(Ⅲ)complexes[J]. Chem. Commun., 2014,50:13323-13326. doi: 10.1039/C4CC05508J

    18. [18]

      Abdelhamid H N, BermejoGómez A, Martín-Matute B, Zou X. A water stable lanthanide metal organic framework for fluorimetric detection of ferric ions and tryptophan[J]. Microchim. Acta, 2017,184:3363-3371. doi: 10.1007/s00604-017-2306-0

    19. [19]

      Wang B, Yang Q, Guo C, Sun Y X, Xie L H, Li J R. Stable Zr (Ⅳ)-based metal organic frameworks with predesigned functionalized ligands for highly selective detection of Fe (Ⅲ) ions in water[J]. ACS Appl. Mater. Interfaces, 2017,9:10286-10295. doi: 10.1021/acsami.7b00918

    20. [20]

      Li L, Zhu Y L, Zhou X H, Brites C D, Ananias D, Lin Z, Paz F A, Rocha J, Huang W, Carlos L D. Visible light excited luminescent thermometer based on single lanthanide organic frameworks[J]. Adv. Funct. Mater., 2016,26:8677-8684. doi: 10.1002/adfm.201603179

    21. [21]

      LIU L, WANG H J, WANG H T, LI Y. Crystal structure of a two dimensional Cd (Ⅱ) complex and its fluorescence recognition of p nitrophenol, tetracycline, 2, 6 dichloro 4 nitroaniline[J]. Chinese J. Inorg. Chem., 2024,40(6):1180-1188. doi: 10.11862/CJIC.20230489

    22. [22]

      ZHANG H, WANG J J, FAN G, TANG L, YUE E, BAI C, WANG X, ZHANG Y Q. A highly stable cadmium (Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol[J]. Chinese J. Inorg. Chem., 2024,40(3):646-654. doi: 10.11862/CJIC.20230291

    23. [23]

      Liu X X, Yang D D, Feng S S, Lu L P. Dual-function Cd (Ⅱ) coordination complexes as sensors for efficient detection of Zn2+ and Tb3+ ions[J]. J. Lumin., 2022,252119426. doi: 10.1016/j.jlumin.2022.119426

    24. [24]

      Liu J, Goetjen T A, Wang Q, Knapp J G, Wasson M C, Yang Y, Syed Z H, Delferro M, Notestein J M, Farha O K, Hup J T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization[J]. Chem. Soc. Rev., 2022,51:1045-1097. doi: 10.1039/D1CS00968K

    25. [25]

      Amooghin E A, Sanaeepur H, Luque R, Garcia H, Chen B L. Fluorinated metal-organic frameworks for gas separation[J]. Chem. Soc. Rev., 2022,51:7427-7508. doi: 10.1039/D2CS00442A

    26. [26]

      Jiang X L, Jiao Y E, Hou S L, Geng L C, Wang H Z, Zhao B. Green conversion of CO2 and propargylamines triggered by triply synergistic catalytic effects in metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2021,60:20417-20423. doi: 10.1002/anie.202106773

    27. [27]

      Gu A L, Zhang Y X, Wu Z L, Cui H Y, Hu T D, Zhao B. Highly efficient conversion of propargylic alcohols and propargylic amines with CO2 activated by noble metal free catalyst Cu2O@ZIF-8[J]. Angew. Chem. Int. Ed., 2022,61e202114817. doi: 10.1002/anie.202114817

    28. [28]

      Huxford R C, DeKrafft K E, Boyle W S, Liu D M, Lin W B. Lipidcoated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells[J]. Chem. Sci., 2012,3:198-204. doi: 10.1039/C1SC00499A

    29. [29]

      Zeng N N, Ren L, Cui G H. Ultrasensitive fluorescence detection of norfloxacin in aqueous medium employing a 2D Zn (Ⅱ)-based coordination polymer[J]. CrystEngComm, 2022,24:931-935. doi: 10.1039/D1CE01537K

    30. [30]

      Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. Highly waterstable Dye@Ln-MOFs for sensitive and selective detection toward antibiotics in water[J]. ACS Appl. Mater. Interfaces, 2019,11:21201-21210. doi: 10.1021/acsami.9b05815

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    9. [9]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    12. [12]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    13. [13]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    20. [20]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

Metrics
  • PDF Downloads(0)
  • Abstract views(33)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return