Citation: Yingqi BAI, Hua ZHAO, Huipeng LI, Xinran REN, Jun LI. Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259 shu

Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties

  • Corresponding author: Huipeng LI, fslhp@sina.com
  • Received Date: 8 July 2024
    Revised Date: 26 December 2024

Figures(12)

  • Lanthanum cobaltate (LaCoO3, LCO) was first prepared by the citric acid-assisted sol-gel method, and the hydrothermal method prepared LaCoO3/g-C3N4 (LCO/CN) p-n heterojunction composite photocatalysts. The LCO/CN was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and photoluminescence (PL) spectroscopy. Its photocatalytic degradation of tetracycline hydrochloride (TC) was evaluated, and the reactive groups that play a role in the photocatalytic reaction were verified using free radical trappers and the reaction mechanism was hypothesized. The results showed that the composite of LCO and CN significantly enhanced the photocatalytic activity of CN, and the 10%LCO/CN prepared with a mass ratio of 10% of LCO to CN exhibited the best photocatalytic performance, with a high degradation rate of 96.2% of 10 mg·L-1 TC in 120 min, and a reaction rate constant of 0.018 93 min-1, 3.04-fold and 1.93-fold higher than that of CN and LCO, respectively. The results of three recycling experiments showed that the degradation rate of TC by 10%LCO/CN decreased less, indicating that the catalyst had good stability and practicability.
  • 加载中
    1. [1]

      WEI Z D, LIU J Y, SHANGGUAN W F. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Int. J. Mol. Sci., 2020, 41(10): 1440-1450

    2. [2]

      BILAL M, ASHRAF S S, BARCELO D, IQBAL H M N. Biocatalytic degradation/redefining "removal" fate of pharmaceutically active compounds and antibiotics in the aquatic environment[J]. Sci. Total Environ., 2019, 691: 1190-1211  doi: 10.1016/j.scitotenv.2019.07.224

    3. [3]

      HUANG S L, HE S, WEI X, XUE G, GAO P. Pollution characteristics of tetracycline residues and tetracycline resistance genes in sewage treatment plants[J]. Prog. Chem., 2015, 34(6): 1779-1785

    4. [4]

      AHMED M J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons[J]. Environ. Toxicol. Pharmacol., 2017, 50: 1-10  doi: 10.1016/j.etap.2017.01.004

    5. [5]

      LIN Z, ZHEN Z, LUO S W, REN L, CHEN Y J, WU W J, ZHANG W J, LIANG Y Q, SONG Z G, LI Y T, ZHANG D Y. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil[J]. J. Hazard. Mater, 2021, 412: 125-212

    6. [6]

      YANG J J. Research on the treatment of antibiotic water pollution[J]. Chemical Engineering Management, 2018, 33: 161-162

    7. [7]

      WANG X C, MARDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1): 76-80  doi: 10.1038/nmat2317

    8. [8]

      WEN J Q, XIE J, CHEN X B, Li X. A review on g-C3N4-based photocatalysts[J]. Appl. Surf. Sci., 2017, 391: 72-123  doi: 10.1016/j.apsusc.2016.07.030

    9. [9]

      LIU Y, ZHAO H, LI H P, CAI T F, WANG Y C. Preparation of carbon-chlorine copolymerized mesoporous g-C3N4 by bubble template method and its photocatalytic performance[J]. China Environmental Science, 2021, 41(10): 4662-4669  doi: 10.3969/j.issn.1000-6923.2021.10.022

    10. [10]

      LI Y H, ZHANG J, ZHANG Y S, CHEN C D. Research progress of graphite phase carbon nitride photocatalyst modification[J]. Journal of Petrochemical Universities, 2019, 32(2): 1-7

    11. [11]

      JIANG J Z, XIONG Z G, WANG H T, LIAO G D, BAI S S, ZOU J, WU P X, ZHANG P, LI X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution[J]. J. Phys. Chem. Lett., 2022, 118: 15-24

    12. [12]

      SHI H C, SHI L. Preparation and photocatalytic properties of carbon nanoparticles/carbon nitride composites[J]. Journal of Liaoning Petrochemical University, 2021, 41(4): 41-45

    13. [13]

      LI Y F, ZHOU M H, CHENG B, SHAO Y. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. J. Phys. Chem. Lett., 2020, 56: 1-17

    14. [14]

      ZHAO Z L, BIAN C, ZHAO L N, WU H J, XU S, SUN L, LI Z J, ZHANG Z J, JING LQ. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation[J]. Chin. J. Catal., 2022, 43(5): 1331-1340

    15. [15]

      QIN J Z, JIA M Y, ZHANG Y F. Research progress of g-C3N4-based heterojunction photocatalysts[J]. Journal of Hebei Normal University (Natural Science), 2023, 47(3): 275-286

    16. [16]

      LOW J X, YU J G, JARONIEC M, WAGEH S, AL-GHAMDI A A. Heterojunction photocatalysts[J]. Adv. Mater., 2017, 29(20): 1601694

    17. [17]

      WANG H L, ZHANG L S, CHEN Z G, HU J Q, LI S J, WANG Z H, LIU J S, WANG X C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chem. Soc. Rev., 2014, 43(15): 5234-5244

    18. [18]

      LI Y F, XIA Z L, YANG Q, WANG L X, XING Y. Review on g-C3N4-based S-scheme heterojunction photocatalysts[J]. J. Mater. Sci. Mater. Med., 2022, 125: 128-144

    19. [19]

      JIANG Z C, ZHANG L Y, YU J G. Research progress on S-type heterojunction photocatalytic materials[J]. J. Chin. Ceram. Soc., 2023, 51(1): 73-81

    20. [20]

      GUAN W S, WANG X Y, WEI X, QIN F, ZHANG S, LI Y Q, WANG M Q, WANG F J, HE H Z, YANG Y Y. Study on the degradation of tetracycline by LaCoO3/Bi2MoO6 heterojunction microspheres in visible light[J]. Journal of Safety and Environment, 2023, 23(11): 4152-4161

    21. [21]

      WANG K, QIAN L, ZHANG L, LIU H R, YAN Z F. Simultaneous removal of NOx and soot particulates over La0.7Ag0.3MnO3perovskite oxide catalysts[J]. Catal. Today, 2010, 158(3/4): 423-426

    22. [22]

      LUO J, ZHOU X S, NING X M, ZHAN L, MA L, XU X Y, LI S, SUN S H. Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4[J]. Sep. Purif. Technol., 2018, 201: 309-317

    23. [23]

      MOHAMED M A, ZAIN M F M, MINGGU L J, KASSIM M B, AMIN N A S, SALLEH W N W, SALEHMIN M N I, NASIR M F M, HIR Z A M. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation[J]. Appl. Catal. B‒Environ., 2018, 236: 265-279

    24. [24]

      WANG X H, HE M L, NAN Z D. Effects of adsorption capacity and activity site on Fenton-like catalytic performance for Na and Fe co-doped g-C3N4[J]. Sep. Purif. Technol., 2021, 256: 117765

    25. [25]

      DONG W, CHANG Q M, WANG W B, YANG S B. Research progress in the preparation of g-C3N4 nanosheets by stripping[J]. J. Chin. Ceram. Soc., 2023, 51(7): 1868-1882

    26. [26]

      NIU Z Y, GUO S L, QIAO F R, WANG J, YANG C F, WANG Y Q. Preparation of LaCoO3 perovskite catalyst and its photocatalytic degradation of tetracycline hydrochloride[J]. Modern Chemical Industry, 2023, 43(3): 163-170

    27. [27]

      HUANG H W, XIAO K, TIAN N, DONG F, ZHANG T R, DU X, ZHANG Y H. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity[J]. J. Mater. Chem. A, 2017, 5(33): 17452-17463

    28. [28]

      LIANG L, CONG Y F, WANG F X, YAO L Z, SHI L. Hydrothermal pre-treatment induced cyanamide to prepare porous g-C3N4 with boosted photocatalytic performance[J]. Diam. Relat. Mater., 2019, 98: 107499

    29. [29]

      LIU Y, WANG W M, FU Z Y, WANG H, WANG Y C, ZHANG J Y. Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties[J]. Mater. Sci. Eng. B, 2011, 176(16): 1264-1270

    30. [30]

      KUCHARCZYK B, TYLUS W. Effect of Pd or Ag additive on the activity and stability of monolithic LaCoO3 perovskites for catalytic combustion of methane[J]. Catal. Today, 2004, 90(1/2): 121-126

    31. [31]

      ZHANG J Y, TAN D D, MENG Q J, WENG X L, WU Z B. Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance[J]. Appl. Catal. B‒Environ., 2015, 172: 18-26

    32. [32]

      LI S D, WANG X L. Synthesis of different morphologies lanthanum ferrite (LaFeO3) fibers via electrospinning[J]. Optik, 2015, 126(4): 408-410

    33. [33]

      LI Y G, HAO J C, SONG H, BAI X H, MENG X, ZHANG H Y, WANG S, HU Y F, YE J H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation[J]. Nat. Commun., 2019, 10(1): 2359

    34. [34]

      LIANG Q, GAO W, LIU C H, XU S, LI Z Y. A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity[J]. J. Hazard. Mater., 2020, 392: 122500

    35. [35]

      JOURSHABANI M, SHARIATINIA Z, BADIEI A. In situ fabrication of SnO2/S-doped g-C3N4 nanocomposites and improved visible light driven photodegradation of methylene blue[J]. J. Mol. Liq., 2017, 248: 688-702

  • 加载中
    1. [1]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    12. [12]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    13. [13]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    18. [18]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(3)
  • Abstract views(1038)
  • HTML views(239)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return