Citation: Wenjing ZHANG, Xiaoqing WANG, Zhipeng LIU. Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254 shu

Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy

Figures(10)

  • Inorganic metal complex-based photothermal materials have garnered significant attention due to their advantages, such as ease of structural modification, tunable properties, high photothermal conversion efficiency, and good biocompatibility. In recent years, remarkable progress has been made in the development of photothermal agents for diagnostics and therapy. This review categorizes these complexes according to different organic ligands, including porphyrin, phthalocyanine, polyphenol, bis(disulfide), and azapyrrolidine, and examines how the coordination of various metal centers, ligand modifications, complex assembly, water solubility regulation, and targeting affect the photothermal properties and therapeutic performance. Additionally, we summarize the research advancements of the past decade in inorganic metal complex photothermal materials and offer insights into potential future directions to further advance their development and application.
  • 加载中
    1. [1]

    2. [2]

      Li X S, Lovell J F, Yoon J, Chen X Y. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat. Rev. Clin. Oncol., 2020,17(11):657-674. doi: 10.1038/s41571-020-0410-2

    3. [3]

      An D, Fu J Y, Zhang B, Xie N, Nie G H, Agren H, Qiu M, Zhang H. NIR-Ⅱ responsive inorganic 2D nanomaterials for cancer photothermal therapy: Recent advances and future challenges[J]. Adv. Funct. Mater., 2021,31(32)2101625. doi: 10.1002/adfm.202101625

    4. [4]

      Ghaffarkhah A, Hosseini E, Kamkar M, Sehat A A, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, applications, and prospects of graphene quantum dots: A comprehensive review[J]. Small, 2022,18(2)2102683. doi: 10.1002/smll.202102683

    5. [5]

      Li J, Zhang W, Ji W H, Wang J Q, Wang N X, Wu W X, Wu Q, Hou X Y, Hu W B, Li L. Near infrared photothermal conversion materials: Mechanism, preparation, and photothermal cancer therapy applications[J]. J. Mater. Chem. B, 2021,9(38):7909-7926. doi: 10.1039/D1TB01310F

    6. [6]

      Yu Q, Zhou J, Wang H, Liu Y, Zhou H, Kang B, Chen H Y, Xu J J. A multiple-response cascade nanoreactor for starvation and deep catalysis chemodynamic assisted near-infrared-Ⅱ mild photothermal therapy[J]. Chem. Biomed. Imaging, 2023,1(3):242-250. doi: 10.1021/cbmi.2c00003

    7. [7]

      Ding Z, Gu Y, Zheng C, Gu Y, Yang J, Li D, Xu Y, Wang P. Organic small molecule-based photothermal agents for cancer therapy: Design strategies from single-molecule optimization to synergistic enhancement[J]. Coord. Chem. Rev., 2022,464214564. doi: 10.1016/j.ccr.2022.214564

    8. [8]

      Jung H S, Verwilst P, Sharma A, Shin J, Sessler J L, Kim J S. Organic molecule-based photothermal agents: an expanding photothermal therapy universe[J]. Chem. Soc. Rev., 2018,47(7):2280-2297. doi: 10.1039/C7CS00522A

    9. [9]

      Lan M H, Zhao S J, Liu W M, Lee C S, Zhang W J, Wang P F. Photosensitizers for photodynamic therapy[J]. Adv. Healthc. Mater., 2019,8(13)1900132. doi: 10.1002/adhm.201900132

    10. [10]

      Li L, Han X, Wang M F, Li C L, Jia T, Zhao X H. Recent advances in the development of near-infrared organic photothermal agents[J]. Chem. Eng. J., 2021,417128844. doi: 10.1016/j.cej.2021.128844

    11. [11]

      Mu X, Wu F P, Tang Y, Wang R, Li Y J, Li K X, Li C F, Lu Y X, Zhou X F, Li Z B. Boost photothermal theranostics via self-assembly-induced crystallization (SAIC)[J]. Aggregate, 2022,3(5)e170. doi: 10.1002/agt2.170

    12. [12]

      Guo B, Feng G X, Manghnani P N, Cai X L, Liu J, Wu W B, Xu S D, Cheng X M, Teh C, Liu B. A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy[J]. Small, 2016,12(45):6243-6254. doi: 10.1002/smll.201602293

    13. [13]

      Wu F S, Chen L, Yue L L, Wang K, Cheng K, Chen J, Luo X G, Zhang T. Small-molecule porphyrin-based organic nanoparticles with remarkable photothermal conversion efficiency for in vivo photoacoustic imaging and photothermal therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(24):21408-21416. doi: 10.1021/acsami.9b06866

    14. [14]

      Duan X Z, Li J, Huang S Y, Li A R, Zhang Y F, Xue Y, Song X H, Zhang Y, Hong S H, Gao H H, Wu Z M, Zhang X E. Reusable and near-infrared light-activated Zinc(Ⅱ) metalated porphyrin with synergetic PDT/PTT for eradicating bacterial pneumonia[J]. Chem. Eng. J., 2023,477146937. doi: 10.1016/j.cej.2023.146937

    15. [15]

      Yang L X, Li H L, Liu D, Su H F, Wang K, Liu G Y, Luo X G, Wu F S. Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy[J]. Colloid Surf. B-Biointerfaces, 2019,182110345. doi: 10.1016/j.colsurfb.2019.110345

    16. [16]

      Zhang Z, Tang W W, Li Y F, Cao Y, Shang Y H. Bioinspired conjugated tri-porphyrin-based intracellular pH-sensitive metallo-supramolecular nanoparticles for near-infrared photoacoustic imaging-guided chemo- and photothermal combined therapy[J]. ACS Biomater. Sci. Eng., 2021,7(9):4503-4508. doi: 10.1021/acsbiomaterials.1c00597

    17. [17]

      Yang M Q, Cao S, Sun X Z, Su H F, Li H L, Liu G Y, Luo X G, Wu F S. Self-assembled naphthalimide conjugated porphyrin nanomaterials with D-A structure for PDT/PTT synergistic therapy[J]. Bioconjugate Chem., 2020,31(3):663-672. doi: 10.1021/acs.bioconjchem.9b00819

    18. [18]

      Chen C S, Chu G Y, Qi M W, Liu Y N, Huang P, Pan H, Wang Y L, Chen Y F, Zhou Y F. Porphyrin alternating copolymer vesicles for photothermal drug-resistant bacterial ablation and wound disinfection[J]. ACS Appl. Bio Mater., 2020,3(12):9117-9125. doi: 10.1021/acsabm.0c01343

    19. [19]

      Ding K K, Zhang Y W, Si W L, Zhong X M, Cai Y, Zou J H, Shao J J, Yang Z, Dong X C. Zinc(Ⅱ) metalated porphyrins as photothermogenic photosensitizers for cancer photodynamic/photothermal synergistic therapy[J]. ACS Appl. Mater. Interfaces, 2018,10(1):238-247. doi: 10.1021/acsami.7b15583

    20. [20]

      Liang P P, Tang H, Gu R, Xue L, Chen D P, Wang W J, Yang Z, Si W L, Dong X C. A pH-responsive zinc(Ⅱ) metalated porphyrin for enhanced photodynamic/photothermal combined cancer therapy[J]. Sci. China Mater., 2019,62(8):1199-1209. doi: 10.1007/s40843-019-9423-5

    21. [21]

      Wang X, Wang J F, Wang J H, Zhong Y, Han L L, Yan J L, Duan P C, Shi B Y, Bai F. Noncovalent self-assembled smart gold(Ⅲ) porphyrin nanodrug for synergistic chemo-photothermal therapy[J]. Nano Lett., 2021,21(8):3418-3425. doi: 10.1021/acs.nanolett.0c04915

    22. [22]

      Lin Y L, He X J, Huang T, Zhao J, Liu L Y, He J Q, Shen J L, Ren Q Z. High-valent silver-porphyrin complex hybrid graphene oxide nanoplatform promotes MRSA-infected wound healing[J]. Chem. Eng. J., 2024,483149279. doi: 10.1016/j.cej.2024.149279

    23. [23]

      Li B, Wang X Y, Chen L, Zhou Y L, Dang W T, Chang J, Wu C T. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers[J]. Theranostics, 2018,8(15):4086-4096. doi: 10.7150/thno.25433

    24. [24]

      Zhang L P, Geng Y, Li L J, Tong X F, Liu S, Liu X M, Su Z M, Xie Z G, Zhu D X, Bryce M R. Rational design of iridium-porphyrin conjugates for novel synergistic photodynamic and photothermal therapy anticancer agents[J]. Chem. Sci., 2021,12(16):5918-5925. doi: 10.1039/D1SC00126D

    25. [25]

      Zhao H, Wang Y, Chen Q, Liu Y, Gao Y J, Muellen K, Li S L, Narita A. A nanographene-porphyrin hybrid for near-infrared-Ⅱ phototheranostics[J]. Adv. Sci., 2024,11(18)2309131. doi: 10.1002/advs.202309131

    26. [26]

      Zhang K, Meng X D, Cao Y, Yang Z, Dong H F, Zhang Y D, Lu H T, Shi Z J, Zhang X J. Metal-organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy[J]. Adv. Funct. Mater., 2018,28(42)1804634. doi: 10.1002/adfm.201804634

    27. [27]

      Zhang H, Tian X T, Shang Y, Li Y H, Yin X B. Theranostic Mn-porphyrin metal-organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy[J]. ACS Appl. Mater. Interfaces, 2018,10(34):28390-28398. doi: 10.1021/acsami.8b09680

    28. [28]

      Xu P J, Wen C C, Gao C J, Liu H H, Li Y S, Guo X L, Shen X C, Liang H. Near-infrared-Ⅱ-activatable self-assembled manganese porphyrin-gold heterostructures for photoacoustic imaging-guided sonodynamic-augmented photothermal/photodynamic therapy[J]. ACS Nano, 2023,18(1):713-727.

    29. [29]

      Lo P C, Rodríguez Morgade M S, Pandey R K, Ng D K P, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer[J]. Chem. Soc. Rev., 2020,49(4):1041-1056. doi: 10.1039/C9CS00129H

    30. [30]

      Zheng B D, He Q X, Li X S, Yoon J, Huang J D. Phthalocyanines as contrast agents for photothermal therapy[J]. Coord. Chem. Rev., 2021,426213548. doi: 10.1016/j.ccr.2020.213548

    31. [31]

      Li X S, Peng X H, Zheng B D, Tang J L, Zhao Y Y, Zheng B Y, Ke M R, Huang J D. New application of phthalocyanine molecules: From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates[J]. Chem. Sci., 2018,9(8):2098-2104. doi: 10.1039/C7SC05115H

    32. [32]

      Li X, Kim C Y, Lee S, Lee D, Chung H M, Kim G, Heo S H, Kim C, Hong K S, Yoon J. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy[J]. J. Am. Chem. Soc., 2017,139(31):10880-10886. doi: 10.1021/jacs.7b05916

    33. [33]

      Wang Z, Gai S L, Wang C Q, Yang G X, Zhong C N, Dai Y L, He F, Yang D, Yang P P. Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment[J]. Chem. Eng. J., 2019,361:117-128. doi: 10.1016/j.cej.2018.12.007

    34. [34]

      Jia Q Y, Ge J C, Liu W M, Zheng X L, Wang M Q, Zhang H Y, Wang P F. Biocompatible iron phthalocyanine-albumin assemblies as photoacoustic and thermal theranostics in living mice[J]. ACS Appl. Mater. Interfaces, 2017,9(25):21124-21132. doi: 10.1021/acsami.7b04360

    35. [35]

      Zeng K, Xu Q F, Ouyang J, Han Y J, Sheng J P, Wen M, Chen W S, Liu Y N. Coordination nanosheets of phthalocyanine as multifunctional platform for imaging-guided synergistic therapy of cancer[J]. ACS Appl. Mater. Interfaces, 2019,11(7):6840-6849. doi: 10.1021/acsami.8b22008

    36. [36]

      Liu P Y, Miao Z H, Li K, Yang H J, Zhen L, Xu C Y. Biocompatible Fe3+-TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells[J]. Colloid Surf. B-Biointerfaces, 2018,167:183-190. doi: 10.1016/j.colsurfb.2018.03.030

    37. [37]

      Liu T, Zhang M K, Liu W L, Zeng X, Song X L, Yang X Q, Zhang X, Feng J. Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications[J]. ACS Nano, 2018,12(4):3917-3927. doi: 10.1021/acsnano.8b01456

    38. [38]

      Deng H L, Yu Z P, Chen S G, Fei L T, Sha Q Y, Zhou N, Chen Z T, Xu C. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection[J]. Carbohydr. Polym., 2020,230115565. doi: 10.1016/j.carbpol.2019.115565

    39. [39]

      Wang Y Q, Zhang J, Zhang C Y, Li B J, Wang J J, Zhang X J, Li D, Sun S K. Functional-protein-assisted fabrication of Fe-gallic acid coordination polymer nanonetworks for localized photothermal therapy[J]. ACS Sustain. Chem. Eng., 2019,7(1):994-1005. doi: 10.1021/acssuschemeng.8b04656

    40. [40]

      Wang T B, Yang J H, Kang H M, Zhang L K, Chen H. Facile preparation of a novel hyaluronic acid-modified metal-polyphenol photothermal nanoformulation for tumor therapy[J]. Int. J. Biol. Macromol., 2022,222:3066-3076. doi: 10.1016/j.ijbiomac.2022.10.081

    41. [41]

      Chen Y, Liu L C, Yu L Y, Kang Y H, Yao S J, Wu D P, Xu J J, Mou X Z, Cai Y. Succinct NIR-Ⅱ absorbed croconic acid-julolidine molecule uniting Fe(Ⅲ)-quercetin complex for efficient mild photothermal therapy of oropharyngeal carcinoma[J]. Chem. Eng. J., 2024,488150907. doi: 10.1016/j.cej.2024.150907

    42. [42]

      Mebrouk K, Chotard F, Le Goff-Gaillard C, Arlot-Bonnemains Y, Fourmigue M, Camerel F. Water-soluble nickel-bis(dithiolene) complexes as photothermal agents[J]. Chem. Commun., 2015,51(25):5268-5270. doi: 10.1039/C4CC08231A

    43. [43]

      Chen K, Fang W J, Zhang Q Y, Jiang X Y, Chen Y, Xu W J, Shen Q M, Sun P F, Huang W. Tunable NIR absorption property of a dithiolene nickel complex: A promising NIR-Ⅱ absorption material for photothermal therapy[J]. ACS Appl. Bio Mater., 2021,4(5):4406-4412. doi: 10.1021/acsabm.1c00168

    44. [44]

      Zhang G Q, Chen X M, Chen X, Du K H, Ding K K, He D, Ding D, Hu R, Qin A J, Tang B Z. Click-reaction-mediated chemotherapy and photothermal therapy synergistically inhibit breast cancer in mice[J]. ACS Nano, 2023,17(15):14800-14813. doi: 10.1021/acsnano.3c03005

    45. [45]

      Li M D, Xu Y J, Zhao M L, Li F Y, Feng W, Feng T, Liu S J, Zhao Q. Rational design of near-infrared-absorbing Pt(Ⅱ)-chelated azadipyrromethene dyes as a new generation of photosensitizers for synergistic phototherapy[J]. Inorg. Chem., 2020,59(24):17826-17833. doi: 10.1021/acs.inorgchem.0c02631

    46. [46]

      Zhao J, Yan K W, Xu G, Liu X, Zhao Q, Xu C J, Gou S H. An iridium(Ⅲ) complex bearing a donor-acceptor-donor type ligand for NIR-triggered dual phototherapy[J]. Adv. Funct. Mater., 2021,31(11)2008325. doi: 10.1002/adfm.202008325

    47. [47]

      Liu Y S, Li Q Q, Gu M J, Lu D S, Xiong X X, Zhang Z Y, Pan Y N, Liao Y Q, Ding Q H, Gong W X, Chen D S, Guan M T, Wu J Z, Tian Z Q, Deng H, Gu L J, Hong X C, Xiao Y L. A second near-infrared Ru(Ⅱ) polypyridyl complex for synergistic chemo-photothermal therapy[J]. J. Med. Chem., 2022,65(3):2225-2237. doi: 10.1021/acs.jmedchem.1c01736

  • 加载中
    1. [1]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    2. [2]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(1)
  • Abstract views(80)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return