Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection
- Corresponding author: Guanying CHEN, chenguanying@hit.edu.cn
Citation: Jinghan ZHANG, Guanying CHEN. Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Zhang J J, Cheng F F, Li J J, Zhu J J, Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives[J]. Nano Today, 2016,11(3):309-329. doi: 10.1016/j.nantod.2016.05.010
Liu Y, Ouyang Q, Li H H, Chen M, Zhang Z Z, Chen Q S. Turn-on fluoresence sensor for Hg2+ in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles[J]. J. Agric. Food Chem., 2018,66(24):6188-6195. doi: 10.1021/acs.jafc.8b00546
Wang F Y, Han Y M, Wang S M, Ye Z J, Wei L, Xiao L H. Single-particle LRET aptasensor for the sensitive detection of aflatoxin B1 with upconversion nanoparticles[J]. Anal. Chem., 2019,91(18):11856-11863. doi: 10.1021/acs.analchem.9b02599
Wang X F, Shen C Q, Zhou C F, Bu Y Y, Yan X H. Methods, principles and applications of optical detection of metal ios[J]. Chem. Eng. J., 2021,417129125. doi: 10.1016/j.cej.2021.129125
Lu Y, Zhao X, Yan D M, Mi Y Q, Sun P, Yan X, Liu X M, Lu G Y. Upconversion-based chiral nanoprobe for highly selective dual-mode sensing and bioimaging of hydrogen sulfide in vitro and in vivo[J]. Light-Sci. Appl., 2024,13(1)180. doi: 10.1038/s41377-024-01539-6
Bi S H, Deng Z M, Huang J Q, Wen X W, Zeng S J. NIR-Ⅱ responsive upconversion nanoprobe with simultaneously enhanced single-band red luminescence and phase/size control for bioimaging and photodynamic therapy[J]. Adv. Mater., 2023,35(7)2207038. doi: 10.1002/adma.202207038
Ansari A A, Parchur A K, Li Y, Jia T, Lv R C, Wang Y X, Chen G Y. Cytotoxicity and genotoxicity evaluation of chemically synthesized and functionalized upconversion nanoparticles[J]. Coord. Chem. Rev., 2024,504215672. doi: 10.1016/j.ccr.2024.215672
Wang M, Abbineni G, Clevenger A, Mao C B, Xu S K. Upconversion nanoparticles: Synthesis, surface modification and biological applications[J]. Nanomed.-Nanotechnol. Biol. Med., 2011,7(6):710-729. doi: 10.1016/j.nano.2011.02.013
Wu Y M, Xu J H, Poh E T, Liang L L, Liu H L, Yang J K W, Qiu C W, Vallee R A L, Liu X G. Upconversion superburst with sub-2 μs lifetime[J]. Nat. Nanotechnol., 2019,14(12):1110-1115. doi: 10.1038/s41565-019-0560-5
Chen C L, Li C G, Shi Z. Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication[J]. Adv. Sci., 2016,3(10)1600029. doi: 10.1002/advs.201600029
Gu B, Zhang Q C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems[J]. Adv. Sci., 2018,5(3)1700609. doi: 10.1002/advs.201700609
Dou Q Q, Guo H C, Ye E Y. Near-infrared upconversion nanoparticles for bio-applications[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2014,45:635-643. doi: 10.1016/j.msec.2014.03.056
Feng W, Han C M, Li F Y. Upconversion-nanophosphor-based functional nanocomposites[J]. Adv. Mater., 2013,25(37):5287-5303. doi: 10.1002/adma.201301946
Fan W P, Bu W B, Shi J L. Upconversion nanoparticles: On the latest three-stage development of nanomedicines based on upconversion nanoparticles[J]. Adv. Mater., 2016,21(28):3977-3977.
Mahapatra T S, Dey A, Singh H, Hossain S S, Mandal A K, Das A. Two-dimensional lanthanide coordination polymer nanosheets for detection of FOX-7[J]. Chem. Sci., 2020,11(4):1032-1042. doi: 10.1039/C9SC05403K
Sun G T, Xie Y, Sun L N, Zhang H J. Lanthanide upconversion and downshifting luminescence for biomolecules detection[J]. Nanoscale Horiz., 2021,6(10):766-780. doi: 10.1039/D1NH00299F
Tsang M K, Bai G X, Hao J H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications[J]. Chem. Soc. Rev., 2015,44(6):1585-1607. doi: 10.1039/C4CS00171K
Li H, Wang X, Huang D X, Chen G Y. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications[J]. Nanotechnology, 2019,31(7)072001.
Chen T, Shang Y F, Hao S W, Zhu C Q, Lei Z T, Wang X, Lv W Q, Yang C H. Reproducible single-droplet multiplexed detection through excitation-encoded tri-mode upconversion solid sensors[J]. Chem. Eng. J., 2022,430131242. doi: 10.1016/j.cej.2021.131242
Fu X, Fu S, Lu Q, Zhang J, Wan P P, Liu J L, Zhang Y, Chen C H, Li W, Wang H D, Mei Q S. Excitation energy mediated cross-relaxation for tunable upconversion luminescence from a single lanthanide ion[J]. Nat. Commun., 2022,13(1)4741. doi: 10.1038/s41467-022-32498-4
Chen G Y, Qiu H L, Prasad P N, Chen X Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics[J]. Chem. Rev., 2014,114(10):5161-5214. doi: 10.1021/cr400425h
Wang F, Deng R R, Wang J, Wang Q X, Yu H, Zhu H M, Chen X Y, Liu X G. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat. Mater., 2011,10(12):968-973. doi: 10.1038/nmat3149
Zhou B, Shi B Y, Jin D Y, Liu X G. Controlling upconversion nanocrystals for emerging applications[J]. Nat. Nanotechnol., 2015,10(11):924-936. doi: 10.1038/nnano.2015.251
Ansari A A, Thakur V K, Chen G Y. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing[J]. Coord. Chem. Rev., 2021,436213821. doi: 10.1016/j.ccr.2021.213821
Yao L M, Zhou J, Liu J L, Li F Y. Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water[J]. Adv. Funct. Mater., 2012,22(13):2667-2672. doi: 10.1002/adfm.201102981
Liu J L, Liu Y, Liu Q, Li C Y, Sun L N, Li F Y. Iridium(Ⅲ) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions[J]. J. Am. Chem. Soc., 2011,133(39):15276-15279. doi: 10.1021/ja205907y
Deng R R, Xie X J, Vendrell M, Chang Y T, Liu X G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J]. J. Am. Chem. Soc., 2011,133(50):20168-20171. doi: 10.1021/ja2100774
Ye W W, Tsang M K, Liu X, Yang M, Hao J H. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype[J]. Small, 2014,10(12):2390-2397. doi: 10.1002/smll.201303766
Siefe C, Mehlenbacher R D, Peng C S, Zhang Y X, Fischer S, Lay A, McLellan C A, Alivisatos A P, Chu S, Dionne J A. Sub-20 nm core-shell-shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer[J]. J. Am. Chem. Soc., 2019,141(42):16997-17005. doi: 10.1021/jacs.9b09571
Zhao M Y, Li B H, Wu Y F, He H S, Zhu X Y, Zhang H X, Dou C R, Feng L S, Fan Y, Zhang F. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-Ⅱ luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Adv. Mater., 2020,32(28)2001172. doi: 10.1002/adma.202001172
Zhou J, Liu Q, Feng W, Sun Y, Li F Y. Upconversion luminescent materials: Advances and applications[J]. Chem. Rev., 2015,115(1):395-465. doi: 10.1021/cr400478f
Liu S J, Zhang L L, Yang T S, Yang H R, Zhang K Y, Zhao X, Lv W, Yu Q, Zhang X L, Zhao Q, Liu X M, Huang W. Development of upconversion luminescent probe for ratiometric sensing and bioimaging of hydrogen sulfide[J]. ACS Appl. Mater. Interfaces, 2014,6(14):11013-11017. doi: 10.1021/am5035158
Chen M, Hassan M, Li H H, Chen Q S. Fluorometric determination of lead(Ⅱ) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles[J]. Microchim. Acta, 2020,187:1-9. doi: 10.1007/s00604-019-3921-8
Zhang M, Wang N N, Li Z H. Recent advances in chromophore‑ assembled upconversion nanoprobes for chemo/biosensing[J]. Trac-Trends Anal. Chem., 2022,151116602. doi: 10.1016/j.trac.2022.116602
Chen M, Kutsanedzie F Y H, Cheng W, Li H H, Chen Q S. Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle‑dithizone nanosystem[J]. Microchem J., 2019,144:296-302. doi: 10.1016/j.microc.2018.09.022
He D Y, Wu Z Z, Cui B, Jin Z Y, Xu E B. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles[J]. Microchim. Acta, 2020,187:1-8. doi: 10.1007/s00604-019-3921-8
Long Q, Fang A J, Wen Y Q, Li H T, Zhang Y Y, Yao S Z. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect[J]. Biosens. Bioelectron., 2016,86:109-114. doi: 10.1016/j.bios.2016.06.017
Chen S, Yu Y L, Wang J H. Inner filter effect-based fluorescent sensing systems: A review[J]. Anal. Chim. Acta, 2018,999:13-26. doi: 10.1016/j.aca.2017.10.026
Liu Y, Ouyang Q, Li H H, Zhang Z Z, Chen Q S. Development of an inner filter effects-based upconversion nanoparticles-curcumin nanosystem for the sensitive sensing of fluoride ion[J]. ACS Appl. Mater. Interfaces, 2017,9(21):18314-18321. doi: 10.1021/acsami.7b04978
Wen S H, Zhou J J, Schuck P J, Suh Y D, Schmidt T W, Jin D Y. Future and challenges for hybrid upconversion nanosystems[J]. Nat. Photonics, 2019,13(12):828-838. doi: 10.1038/s41566-019-0528-x
Kim J S, Quang D T. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007,107(9):3780-3799. doi: 10.1021/cr068046j
Hakeem D A, Su S S, Mo Z R, Wen H L. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis[J]. Crit. Rev. Food Sci. Nutr., 2022,62(32):8866-8907. doi: 10.1080/10408398.2021.1937039
Wu Q Q, Fang A J, Li H T, Zhang Y Y, Yao S Z. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum[J]. Biosens. Bioelectron., 2016,77:957-962. doi: 10.1016/j.bios.2015.10.084
Yu Q R, He C X, Li Q, Zhou Y, Duan N, Wu S J. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles[J]. Microchim. Acta, 2020,187:1-10. doi: 10.1007/s00604-019-3921-8
Wang L, Ahmad W, Wu J Z, Wang X N, Chen Q S, Ouyang Q. Selective detection of carbendazim using a upconversion fluorescence sensor modified by biomimetic molecularly imprinted polymers[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,284121457. doi: 10.1016/j.saa.2022.121457
Cao Y C, Hu X L, Zhao T, Mao Y H, Fang G Z, Wang S. A core-shell molecularly imprinted optical sensor based on the upconversion nanoparticles decorated with zinc-based metal-organic framework for selective and rapid detection of octopamine[J]. Sens. Actuator B-Chem., 2021,326128838. doi: 10.1016/j.snb.2020.128838
Saleh S M, Ali R, Wolfbeis O S. Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions[J]. Chem.-Eur. J., 2011,17(51):14611-14617. doi: 10.1002/chem.201101860
Liang T, Li Z, Song D, Shen L, Zhuang Q G, Liu Z H. Modulating the luminescence of upconversion nanoparticles with heavy metal ions: A new strategy for probe design[J]. Anal. Chem., 2016,88(20):9989-9995. doi: 10.1021/acs.analchem.6b01963
Gerelkhuu Z, Jung D, Huy B T, Tawfik S M, Conte M L, Conte E D, Lee Y. Highly selective and sensitive detection of catecholamines using NaLuGdF4∶Yb3+/Er3+ upconversion nanoparticles decorated with metal ions[J]. Sens. Actuator B-Chem., 2019,284:172-178. doi: 10.1016/j.snb.2018.12.135
Rong Y W, Hassan M M, Ouyang Q, Chen Q S. Lanthanide ion (Ln3+)-based upconversion sensor for quantification of food contaminants: A review[J]. Compr. Rev. Food. Sci. Food Saf., 2021,20(4):3531-3578. doi: 10.1111/1541-4337.12765
Zheng H Y, Sheng R, Li H H, Ahmad W, Chen Q S. Rapid and selective detection of Bacillus cereus in food using cDNA-based up‑conversion fluorescence spectrum copy and aptamer modified magnetic separation[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,267120618. doi: 10.1016/j.saa.2021.120618
Zhang Y W, Sun X, Si R, You L P, Yan C H. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor[J]. J. Am. Chem. Soc., 2005,127(10):3260-3261. doi: 10.1021/ja042801y
DaCosta M V, Doughan S, Han Y, Krull U J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review[J]. Anal. Chim. Acta, 2014,832:1-33. doi: 10.1016/j.aca.2014.04.030
Wang M, Zhang Y, Yao Q F, Ng M, Li X, Bhakoo K K, Chang A Y, Rosei F, Vetrone F. Morphology control of lanthanide doped NaGdF4 nanocrystals via one-step thermolysis[J]. Chem. Mater., 2019,31(14):5160-5171. doi: 10.1021/acs.chemmater.9b01155
Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties[J]. J. Am. Chem. Soc., 2006,128(19):6426-6436. doi: 10.1021/ja060212h
Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties[J]. Chem. Mat., 2013,25(1):106-112. doi: 10.1021/cm3033498
Zhao J X, Chen X, Chen B, Luo X, Sun T Y, Zhang W W, Wang C J, Lin J, Su D, Qiao X S, Wang F. Accurate control of core-shell upconversion nanoparticles through anisotropic strain engineering[J]. Adv. Funct. Mater., 2019,29(44)1903295. doi: 10.1002/adfm.201903295
Gnanasammandhan M K, Idris N M, Bansal A, Huang K, Zhang Y. Near-IR photoactivation using mesoporous silica-coated NaYF4∶Yb, Er/Tm upconversion nanoparticles[J]. Nat. Protoc., 2016,11(4):688-713. doi: 10.1038/nprot.2016.035
Stouwdam J W, van Veggel F C J M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles[J]. Nano Lett., 2002,2(7):733-737. doi: 10.1021/nl025562q
Heer S, Kompe K, Gudel H U, Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals[J]. Adv. Mater., 2004,16(23/24):2102-2105.
Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev., 2009,38(4):976-989. doi: 10.1039/b809132n
Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angew. Chem. Int. Ed., 2007,119(42):8122-8125. doi: 10.1002/ange.200702519
Wang M, Mi C C, Liu J L, Wu X L, Zhang Y X, Hou W, Li F, Xu S K. One-step synthesis and characterization of water-soluble NaYF4∶ Yb, Er/polymer nanoparticles with efficient up-conversion fluorescence[J]. J. Alloy. Compd., 2009,485(1/2):L24-L27.
Liang X, Wang X, Zhuang J, Peng Q, Li Y D. Branched NaYF4 nanocrystals with luminescent properties[J]. Inorg. Chem., 2007,46(15):6050-6055. doi: 10.1021/ic700523x
Pan Z F, Wen Y T, Wang T, Wang K, Teng Y J, Shao K. One-step synthesis of hollow PEI-NaBiF4∶Yb3+/Er3+ upconversion nanoparticles for water-responsive luminescent probe[J]. J. Rare Earths, 2020,38(4):362-368. doi: 10.1016/j.jre.2019.04.022
Wang G F, Qin W P, Wei G D, Wang L L, Zhu P F, Kim R J, Zhang D S, Ding F H, Zheng K Z. Synthesis and upconversion luminescence properties of YF3∶Yb3+/Tm3+ octahedral nanocrystals[J]. J. Fluor. Chem., 2009,130(2):158-161. doi: 10.1016/j.jfluchem.2008.09.009
Park H, Yoo G Y, Kim M S, Kim K, Lee C H, Park S N, Kim W O. Thin film fabrication of upconversion lanthanide-doped NaYF4 by a sol-gel method and soft lithographical nanopatterning[J]. J. Alloy. Compd., 2017,728:927-935. doi: 10.1016/j.jallcom.2017.09.076
Mi C C, Tian Z H, Cao C, Wang Z J, Mao C B, Xu S K. Novel microwave-assisted solvothermal synthesis of NaYF4∶Yb, Er upconversion nanoparticles and their application in cancer cell imaging[J]. Langmuir, 2011,27(23):14632-14637. doi: 10.1021/la204015m
Li D, Dong X T, Yu W S, Wang J X, Liu G X. Synthesis and upconversion luminescence properties of YF3∶Yb3+/Er3+ hollow nanofibers derived from Y2O3: Yb3+/Er3+ hollow nanofibers[J]. J. Nanopart. Res., 2013,15:1-10.
Boyer J C, Vetrone F, Cuccia L A, Capobianco J. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors[J]. J. Am. Chem. Soc., 2006,128(23):7444-7445. doi: 10.1021/ja061848b
Jin B R, Wang S R, Lin M, Lin M, Jin Y, Zhang S J, Cui X Y, Gong Y, Li A, Xu F, Lu T J. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection[J]. Biosens. Bioelectron., 2017,90:525-533. doi: 10.1016/j.bios.2016.10.029
Johnson N J J, Oakden W, Stanisz G J, Prosser R S, Veggel F C J M. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement[J]. Chem. Mat., 2011,23(16):3714-3722. doi: 10.1021/cm201297x
Malhotra K, Fuku R, Kumar B, Hrovat D, Houten J V, Piunno P A E, Gunning P T, Krull U J. Unlocking long-term stability of upconversion nanoparticles with biocompatible phosphonate-based polymer coatings[J]. Nano Lett., 2022,22(18):7285-7293. doi: 10.1021/acs.nanolett.2c00437
Johnson N J J, Sangeetha N M, Boyer J C, van Veggel F C J M. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4∶Yb3+/Er3+ nanoparticles[J]. Nanoscale, 2010,2(5):771-777. doi: 10.1039/b9nr00379g
Yang D M, Kang X J, Ma P A, Dai Y L, Hou Z Y, Cheng Z Y, Li C X, Lin J. Hollow structured upconversion luminescent NaYF4∶Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery[J]. Biomaterials, 2013,34(5):1601-1612. doi: 10.1016/j.biomaterials.2012.11.004
Kumar R, Nyk M, Ohulchanskyy T Y, Flask C A, Prasad P N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals[J]. Adv. Funct. Mater., 2009,19(6):853-859. doi: 10.1002/adfm.200800765
Bogdan N, Vetrone F, Ozin G A, Capobianco J A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J]. Nano Lett., 2011,11(2):835-840. doi: 10.1021/nl1041929
Sun C N, Simke J R J, Gradzielski M. An efficient synthetic strategy for ligand-free upconversion nanoparticles[J]. Mater. Adv., 2020,1(6):1602-1607. doi: 10.1039/D0MA00411A
Chen Z G, Chen H L, Hu H, Yu M X, Li F Y, Zhang Q, Zhou Z G, Huang C H. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels[J]. J. Am. Chem. Soc., 2008,130(10):3023-3029. doi: 10.1021/ja076151k
Sivakumar S, Diamente P R, van Veggel F C J M. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down-and upconverting biolabels[J]. Chem.-Eur. J., 2006,12(22):5878-5884. doi: 10.1002/chem.200600224
Sun L L, Wang T, Sun Y Z, Li Z X, Song H N, Zhang B, Zhou G J, Zhou H F, Hu J F. Fluorescence resonance energy transfer between NH2-NaYF4∶Yb, Er/NaYF4@SiO2 upconversion nanoparticles and gold nanoparticles for the detection of glutathione and cadmium ions[J]. Talanta, 2020,207120294. doi: 10.1016/j.talanta.2019.120294
Mukhopadhyay L, Rai V K. Colloidal stability and optical thermometry in mesoporous silica coated phosphate based upconverting nanoparticles[J]. J. Alloy. Compd., 2021,878160351. doi: 10.1016/j.jallcom.2021.160351
Wang L, Zhao W J, Tan W H. Bioconjugated silica nanoparticles: Development and applications[J]. Nano Res., 2008,1:99-115. doi: 10.1007/s12274-008-8018-3
Li Z Q, Wang L M, Wang Z Y, Liu X H, Xiong Y J. Modification of NaYF4∶Yb, Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions[J]. J. Phys. Chem. C, 2011,115(8):3291-3296. doi: 10.1021/jp110603r
Zhang Z M, Wang J, Song Y X, Wang Z K, Dong M D, Liu L. Disassembly of Alzheimer's amyloid fibrils by functional upconversion nanoparticles under near-infrared light irradiation[J]. Colloid Surf. B-Biointerfaces, 2019,181:341-348. doi: 10.1016/j.colsurfb.2019.05.053
Yang J P, Deng Y H, Wu Q L, Zhou J, Bao H F, Li Q, Zhang F, Li F Y, Tu B, Zhao D Y. Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation[J]. Langmuir, 2010,26(11):8850-8856. doi: 10.1021/la904596x
Chu Z Y, Chen H, Wang P, Wang W N, Yang J, Sun J N, Chen B J, Zha Z B, Wang H, Qian H S. Phototherapy using a fluoroquinolone antibiotic drug to suppress tumor migration and proliferation and to enhance apoptosis[J]. ACS Nano, 2022,16(3):4917-4929. doi: 10.1021/acsnano.2c00854
Wang L Y, Yan R X, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J]. Angew. Chem. Int. Ed., 2005,44(37):6054-6057. doi: 10.1002/anie.200501907
Bao Y, Luu Q A N, Lin C, Schloss J M, May P S, Jiang C Y. Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals[J]. J. Mater. Chem., 2010,20(38):8356-8361. doi: 10.1039/c0jm01602k
Li X H, Wu Y Q, Liu Y, Zou X M, Yao L M, Li F Y, Feng W. Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water[J]. Nanoscale, 2014,6(2):1020-1028. doi: 10.1039/C3NR05195A
Ho C S, Jean N, Hogan C A, Blackmon L, Jeffrey S S, Holodniy M, Banaei N, Saleh A A E, Ermon S, Dionne J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nat. Commun., 2019,10(1)4927. doi: 10.1038/s41467-019-12898-9
Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a "sandwich" oligonucleotide hybridization and fluorescence resonance energy transfer process using an Ln(Ⅲ)-MOF and Ag nanoparticles for early cancer diagnosis: Application of central composite design[J]. ACS Appl. Mater. Interfaces, 2020,12(14):16076-16087. doi: 10.1021/acsami.0c00891
Yu L, Chen H X, Yue J, Chen X F, Sun M T, Hou J, Alamry K A, Marwani H M, Wang X K, Wang S H. Europium metal-organic framework for selective and sensitive detection of doxycycline based on fluorescence enhancement[J]. Talanta, 2020,207120297. doi: 10.1016/j.talanta.2019.120297
Kumar M, Zhang P. Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles[J]. Biosens. Bioelectron., 2010,25(11):2431-2435. doi: 10.1016/j.bios.2010.03.038
Zhang K Y, Zhu G, Wei Y L, Zhang L, Shen Y Z. Engineering of an upconversion luminescence sensing platform based on the competition effect for mercury-ion monitoring in green tea[J]. J. Agric. Food Chem., 2021,69(30):8565-8570. doi: 10.1021/acs.jafc.1c03100
Yang C C, Li Y Y, Wu N, Zhang Y C, Feng W, Yu M M, Li Z X. Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging[J]. Sens. Actuator B-Chem., 2021,326128841. doi: 10.1016/j.snb.2020.128841
Xu Y, Kutsanedzie F Y H, Ali S, Wang P Y, Li C Y, Ouyang Q, Li H H, Chen Q S. Cysteamine-mediated upconversion sensor for lead ion detection in food[J]. J. Food Meas. Charact., 2021,15:4849-4857. doi: 10.1007/s11694-021-01054-x
Zhang Y, Wu L Q, Tang Y R, Su Y Y, Lv Y. An upconversion fluorescence based turn-on probe for detecting lead(Ⅱ) ions[J]. Anal. Methods, 2014,6(22):9073-9077. doi: 10.1039/C4AY01882F
Wang Y, Lv M H, Chen Z H, Deng Z L, Liu N T, Fan J W, Zhang W X. A fluorescence resonance energy transfer probe based on DNA-modified upconversion and gold nanoparticles for detection of lead ions[J]. Front. Chem., 2020,8238. doi: 10.3389/fchem.2020.00238
Jiang X M, Meng G W. A rhodamine-based sensing probe excited by upconversion NaYF4∶Yb3+/Er3+ nanoparticles: The realization of simple Cu(Ⅱ) detection with high sensitivity and unique selectivity[J]. J. Lumines., 2013,135:227-231. doi: 10.1016/j.jlumin.2012.10.011
Su S S, Mo Z R, Tan G Z, Wen H L, Chen X, Hakeem D A. PAA modified upconversion nanoparticles for highly selective and sensitive detection of Cu2+ ions[J]. Front. Chem., 2021,8619764. doi: 10.3389/fchem.2020.619764
Wang X D, Zhang X R, Huang D X, Zhao T Y, Zhao L L, Fang X K, Yang C H, Chen G Y. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level[J]. Anal. Chem., 2021,93(34):11686-11691. doi: 10.1021/acs.analchem.1c01311
Liu Y X, Jiang A Q, Jia Q, Zhai X J, Liu L D, Ma L Y, Zhou J. Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics[J]. Chem. Sci., 2018,9(23):5242-5251. doi: 10.1039/C8SC00670A
Han J F, Zhang C, Liu F, Liu B H, Han M Y, Zou W S, Yang L, Zhang Z P. Upconversion nanoparticles for ratiometric fluorescence detection of nitrite[J]. Analyst, 2014,139(12):3032-3038. doi: 10.1039/C4AN00402G
Chen H Q, Tang W, Liu Y C, Wang L. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF4∶Yb, Tm@ NaYF4 upconversion nanoparticles composite luminescent probe[J]. Food Chem., 2022,367130660. doi: 10.1016/j.foodchem.2021.130660
Nathan C, Cunningham-Bussel A. Beyond oxidative stress: An immunologist's guide to reactive oxygen species[J]. Nat. Rev. Immunol., 2013,13(5):349-361. doi: 10.1038/nri3423
Li Z, Liang T, Lv S W, Zhuang Q G, Liu Z H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical[J]. J. Am. Chem. Soc., 2015,137(34):11179-11185. doi: 10.1021/jacs.5b06972
Liu Y X, Jia Q, Guo Q W, Jiang A Q, Zhou J. In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes[J]. Anal. Chem., 2017,89(22):12299-12305. doi: 10.1021/acs.analchem.7b03270
Jia Q, Liu Y X, Duan Y, Zhou J. Interference-free detection of hydroxyl radical and arthritis diagnosis by rare earth-based nanoprobe utilizing SWIR emission as reference[J]. Anal. Chem., 2019,91(17):11433-11439. doi: 10.1021/acs.analchem.9b02855
Wang H, Wang Z H, Li Y K, Xu T, Zhang Q, Yang M, Wang P, Gu Y Q. A novel theranostic nanoprobe for in vivo singlet oxygen detection and real-time dose-effect relationship monitoring in photodynamic therapy[J]. Small, 2019,15(39)1902185. doi: 10.1002/smll.201902185
Wang H, Li Y K, Yang M, Wang P, Gu Y Q. FRET-based upconversion nanoprobe sensitized by Nd3+ for the ratiometric detection of hydrogen peroxide in vivo[J]. ACS Appl. Mater. Interfaces, 2019,11(7):7441-7449. doi: 10.1021/acsami.8b21549
Li J, Huang X W, Chen J Y, Lou Z Z, Li B J. Non-metallic plasmon-assisted upconversion fluorescence for ultrasensitive hydrogen peroxide detection from nM to μM[J]. Nanoscale, 2024,16(18):9029-9035. doi: 10.1039/D4NR00344F
Feng Y N, Lei D, Zu B Y, Li J G, Li Y J, Dou X C. A self-accelerating naphthalimide-based probe coupled with upconversion nanoparticles for ultra-accurate tri-mode visualization of hydrogen peroxide[J]. Adv. Sci., 20242309182.
Wang N N, Yu X Y, Zhang K, Mirkin C A, Li J S. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide[J]. J. Am. Chem. Soc., 2017,139(36):12354-12357. doi: 10.1021/jacs.7b06059
Zhu J W, Yu N, Bao C Q, Shi H F, Li Qiang, Dai K, Jiang C L. Upconversion-based intelligent dual-mode hydrogel nanosensor for visual quantitative detection of formaldehyde[J]. Chem. Eng. J., 2024,480148106. doi: 10.1016/j.cej.2023.148106
Zhang C L, Ling X, Mei Q S, He H B, Deng S S, Zhang Y. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide[J]. Analyst, 2020,145(2):537-543. doi: 10.1039/C9AN01725A
Wang N N, Li Z H, Liu W, Deng T, Yang J F, Yang R H, Li J S. Upconversion nanoprobes for in vitro and ex vivo measurement of carbon monoxide[J]. ACS Appl. Mater. Interfaces, 2019,11(30):26684-26689. doi: 10.1021/acsami.9b08549
Ye M N, Zhang J, Jiang D T, Tan Q, Li J Y, Yao C, Zhu C J, Zhou Y. A hemicyanine-assembled upconversion nanosystem for NIR-excited visualization of carbon monoxide bio-signaling in vivo[J]. Small, 2022,18(28)2202263. doi: 10.1002/smll.202202263
Gao M P, Wu R Y, Mei Q S, Zhang C L, Lin G X, Deng S S, He H B, Zhang Y. Upconversional nanoprobes with highly efficient energy transfer for ultrasensitive detection of alkaline phosphatase[J]. ACS Sen., 2019,4(11):2864-2868. doi: 10.1021/acssensors.9b00858
Guo Y Y, Zhao T L, Guo Q N, Ding M J, Chen X R, Lin J Q. A ligand-free up-conversion nanoplatform based on enzyme cascade amplification strategy for highly sensitive detection of alkaline phosphatase[J]. Microchem. J., 2023,193109170. doi: 10.1016/j.microc.2023.109170
Guo T, Deng Q L, Fang G Z, Ma L, Wang S. Fluorescence sensor based on molecularly imprinted polymers and core-shell upconversion nanoparticles@metal-organic frameworks for detection of bovine serum albumin[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,279121460. doi: 10.1016/j.saa.2022.121460
Chen J R, Ho W K H, Yin B H, Zhang Q, Li C Q, Yan J X, Huang Y Y, Hao J H, Yi C Q, Zhang Y, Wong S H D, Yang M. Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein[J]. Biosens. Bioelectron., 2024,248115969. doi: 10.1016/j.bios.2023.115969
Brandmeier J C, Jurga N, Grzyb T, Hlavacek A, Oborilova R, Farke Z, Gorris H H. Digital and analog detection of SARS-CoV-2 nucleocapsid protein via an upconversion-linked immunosorbent assay[J]. Anal. Chem., 2023,95(10):4753-4759. doi: 10.1021/acs.analchem.2c05670
Pan L P, Huang K L, Min G Z, Li X B, Shao J J, Ma F X, Kong L Q, Zou M Y, Meng G Q, Chen W, Yang L K, Liu X Y, Li N B. Upconversion-luminescent optical fiber probe for in situ tyrosinase monitoring[J]. Sens. Actuator B-Chem., 2022,358131474. doi: 10.1016/j.snb.2022.131474
Wu B, Cao Z Q, Zhang Q, Wang G J. NIR-responsive DNA hybridization detection by high efficient FRET from 10-nm upconversion nanoparticles to SYBR green Ⅰ[J]. Sens. Actuator B-Chem., 2018,255:2853-2860. doi: 10.1016/j.snb.2017.09.103
Lan J M, Liu Y X, Li L, Wen F D, Wu F, Han Z Z, Sun W M, Li C Y, Chen J H. A upconversion luminescene biosensor based on dual-signal amplification for the detection of short DNA species of c-erbB-2 oncogene[J]. Sci. Rep., 2016,6(1)24813. doi: 10.1038/srep24813
Ren H, Long Z, Shen X T, Zhang Y, Sun J H, Ouyang J, Na N. Sandwich DNA hybridization fluorescence resonance energy-transfer strategy for miR-122 detection by core-shell upconversion nanoparticles[J]. ACS Appl. Mater. Interfaces, 2018,10(30):25621-25628. doi: 10.1021/acsami.8b03429
Wang G, Fu Y K, Ren Z H, Huang J, Best S, Li X, Han G R. Upconversion nanocrystal 'armoured' silica fibres with superior photoluminescence for miRNA detection[J]. Chem. Commun., 2018,54(49):6324-6327. doi: 10.1039/C8CC03480J
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
MAA: methylacrylic acid, MPS: [3-(methacryloyloxy)propyl] trimethoxysilan, EGDMA: ethyleneglycol dimethacrylate, AIBN: 2,2′-azobisisobutyronitrile, CBZ: carbendazim; MAM: methacrylamide.
AuNRs: gold nanorods; AuNPs: gold nanoparticles.
mOG: modified orange G, SWUCNPs: sandwich structured UCNPs.
BSA: bovine serum albumin.