Citation: Jinghan ZHANG, Guanying CHEN. Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249 shu

Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection

  • Corresponding author: Guanying CHEN, chenguanying@hit.edu.cn
  • Received Date: 2 July 2024
    Revised Date: 29 October 2024

Figures(14)

  • The responsive optical sensor demonstrates broad potential for specific detection and micro-quantitative analysis. Rare-earth-doped upconversion nanoparticle (UCNP), owing to their unique fluorescence properties, large anti-Stokes shift, good biocompatibility, and resistance to autofluorescence interference, can serve as emerging optical labels for achieving high-sensitivity biological detection at deeper tissue levels. This review focuses on the prospects and key applications of UCNP-based fluorescent nanoprobes in the field of biological detection, including specific detection of ions, reactive oxygen species, gases, and biomolecules. Additionally, this review discusses the sensing mechanisms of upconversion detection and the design principles of nanoprobes, evaluates the future challenges of upconversion nanoprobes in basic research and clinical applications, and aims to provide theoretical support and experimental guidance for the wide application of UCNP in biological detection and clinical diagnosis.
  • 加载中
    1. [1]

      Zhang J J, Cheng F F, Li J J, Zhu J J, Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives[J]. Nano Today, 2016,11(3):309-329. doi: 10.1016/j.nantod.2016.05.010

    2. [2]

      Liu Y, Ouyang Q, Li H H, Chen M, Zhang Z Z, Chen Q S. Turn-on fluoresence sensor for Hg2+ in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles[J]. J. Agric. Food Chem., 2018,66(24):6188-6195. doi: 10.1021/acs.jafc.8b00546

    3. [3]

      Wang F Y, Han Y M, Wang S M, Ye Z J, Wei L, Xiao L H. Single-particle LRET aptasensor for the sensitive detection of aflatoxin B1 with upconversion nanoparticles[J]. Anal. Chem., 2019,91(18):11856-11863. doi: 10.1021/acs.analchem.9b02599

    4. [4]

      Wang X F, Shen C Q, Zhou C F, Bu Y Y, Yan X H. Methods, principles and applications of optical detection of metal ios[J]. Chem. Eng. J., 2021,417129125. doi: 10.1016/j.cej.2021.129125

    5. [5]

      Lu Y, Zhao X, Yan D M, Mi Y Q, Sun P, Yan X, Liu X M, Lu G Y. Upconversion-based chiral nanoprobe for highly selective dual-mode sensing and bioimaging of hydrogen sulfide in vitro and in vivo[J]. Light-Sci. Appl., 2024,13(1)180. doi: 10.1038/s41377-024-01539-6

    6. [6]

      Bi S H, Deng Z M, Huang J Q, Wen X W, Zeng S J. NIR-Ⅱ responsive upconversion nanoprobe with simultaneously enhanced single-band red luminescence and phase/size control for bioimaging and photodynamic therapy[J]. Adv. Mater., 2023,35(7)2207038. doi: 10.1002/adma.202207038

    7. [7]

      Ansari A A, Parchur A K, Li Y, Jia T, Lv R C, Wang Y X, Chen G Y. Cytotoxicity and genotoxicity evaluation of chemically synthesized and functionalized upconversion nanoparticles[J]. Coord. Chem. Rev., 2024,504215672. doi: 10.1016/j.ccr.2024.215672

    8. [8]

      Wang M, Abbineni G, Clevenger A, Mao C B, Xu S K. Upconversion nanoparticles: Synthesis, surface modification and biological applications[J]. Nanomed.-Nanotechnol. Biol. Med., 2011,7(6):710-729. doi: 10.1016/j.nano.2011.02.013

    9. [9]

      Wu Y M, Xu J H, Poh E T, Liang L L, Liu H L, Yang J K W, Qiu C W, Vallee R A L, Liu X G. Upconversion superburst with sub-2 μs lifetime[J]. Nat. Nanotechnol., 2019,14(12):1110-1115. doi: 10.1038/s41565-019-0560-5

    10. [10]

      Chen C L, Li C G, Shi Z. Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication[J]. Adv. Sci., 2016,3(10)1600029. doi: 10.1002/advs.201600029

    11. [11]

      Gu B, Zhang Q C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems[J]. Adv. Sci., 2018,5(3)1700609. doi: 10.1002/advs.201700609

    12. [12]

      Dou Q Q, Guo H C, Ye E Y. Near-infrared upconversion nanoparticles for bio-applications[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2014,45:635-643. doi: 10.1016/j.msec.2014.03.056

    13. [13]

      Feng W, Han C M, Li F Y. Upconversion-nanophosphor-based functional nanocomposites[J]. Adv. Mater., 2013,25(37):5287-5303. doi: 10.1002/adma.201301946

    14. [14]

      Fan W P, Bu W B, Shi J L. Upconversion nanoparticles: On the latest three-stage development of nanomedicines based on upconversion nanoparticles[J]. Adv. Mater., 2016,21(28):3977-3977.

    15. [15]

      Mahapatra T S, Dey A, Singh H, Hossain S S, Mandal A K, Das A. Two-dimensional lanthanide coordination polymer nanosheets for detection of FOX-7[J]. Chem. Sci., 2020,11(4):1032-1042. doi: 10.1039/C9SC05403K

    16. [16]

      Sun G T, Xie Y, Sun L N, Zhang H J. Lanthanide upconversion and downshifting luminescence for biomolecules detection[J]. Nanoscale Horiz., 2021,6(10):766-780. doi: 10.1039/D1NH00299F

    17. [17]

      Tsang M K, Bai G X, Hao J H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications[J]. Chem. Soc. Rev., 2015,44(6):1585-1607. doi: 10.1039/C4CS00171K

    18. [18]

      Li H, Wang X, Huang D X, Chen G Y. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications[J]. Nanotechnology, 2019,31(7)072001.

    19. [19]

      Chen T, Shang Y F, Hao S W, Zhu C Q, Lei Z T, Wang X, Lv W Q, Yang C H. Reproducible single-droplet multiplexed detection through excitation-encoded tri-mode upconversion solid sensors[J]. Chem. Eng. J., 2022,430131242. doi: 10.1016/j.cej.2021.131242

    20. [20]

      Fu X, Fu S, Lu Q, Zhang J, Wan P P, Liu J L, Zhang Y, Chen C H, Li W, Wang H D, Mei Q S. Excitation energy mediated cross-relaxation for tunable upconversion luminescence from a single lanthanide ion[J]. Nat. Commun., 2022,13(1)4741. doi: 10.1038/s41467-022-32498-4

    21. [21]

      Chen G Y, Qiu H L, Prasad P N, Chen X Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics[J]. Chem. Rev., 2014,114(10):5161-5214. doi: 10.1021/cr400425h

    22. [22]

      Wang F, Deng R R, Wang J, Wang Q X, Yu H, Zhu H M, Chen X Y, Liu X G. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nat. Mater., 2011,10(12):968-973. doi: 10.1038/nmat3149

    23. [23]

      Zhou B, Shi B Y, Jin D Y, Liu X G. Controlling upconversion nanocrystals for emerging applications[J]. Nat. Nanotechnol., 2015,10(11):924-936. doi: 10.1038/nnano.2015.251

    24. [24]

      Ansari A A, Thakur V K, Chen G Y. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing[J]. Coord. Chem. Rev., 2021,436213821. doi: 10.1016/j.ccr.2021.213821

    25. [25]

      Yao L M, Zhou J, Liu J L, Li F Y. Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water[J]. Adv. Funct. Mater., 2012,22(13):2667-2672. doi: 10.1002/adfm.201102981

    26. [26]

      Liu J L, Liu Y, Liu Q, Li C Y, Sun L N, Li F Y. Iridium(Ⅲ) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions[J]. J. Am. Chem. Soc., 2011,133(39):15276-15279. doi: 10.1021/ja205907y

    27. [27]

      Deng R R, Xie X J, Vendrell M, Chang Y T, Liu X G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J]. J. Am. Chem. Soc., 2011,133(50):20168-20171. doi: 10.1021/ja2100774

    28. [28]

      Ye W W, Tsang M K, Liu X, Yang M, Hao J H. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype[J]. Small, 2014,10(12):2390-2397. doi: 10.1002/smll.201303766

    29. [29]

      Siefe C, Mehlenbacher R D, Peng C S, Zhang Y X, Fischer S, Lay A, McLellan C A, Alivisatos A P, Chu S, Dionne J A. Sub-20 nm core-shell-shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer[J]. J. Am. Chem. Soc., 2019,141(42):16997-17005. doi: 10.1021/jacs.9b09571

    30. [30]

      Zhao M Y, Li B H, Wu Y F, He H S, Zhu X Y, Zhang H X, Dou C R, Feng L S, Fan Y, Zhang F. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-Ⅱ luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Adv. Mater., 2020,32(28)2001172. doi: 10.1002/adma.202001172

    31. [31]

      Zhou J, Liu Q, Feng W, Sun Y, Li F Y. Upconversion luminescent materials: Advances and applications[J]. Chem. Rev., 2015,115(1):395-465. doi: 10.1021/cr400478f

    32. [32]

      Liu S J, Zhang L L, Yang T S, Yang H R, Zhang K Y, Zhao X, Lv W, Yu Q, Zhang X L, Zhao Q, Liu X M, Huang W. Development of upconversion luminescent probe for ratiometric sensing and bioimaging of hydrogen sulfide[J]. ACS Appl. Mater. Interfaces, 2014,6(14):11013-11017. doi: 10.1021/am5035158

    33. [33]

      Chen M, Hassan M, Li H H, Chen Q S. Fluorometric determination of lead(Ⅱ) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles[J]. Microchim. Acta, 2020,187:1-9. doi: 10.1007/s00604-019-3921-8

    34. [34]

      Zhang M, Wang N N, Li Z H. Recent advances in chromophore‑ assembled upconversion nanoprobes for chemo/biosensing[J]. Trac-Trends Anal. Chem., 2022,151116602. doi: 10.1016/j.trac.2022.116602

    35. [35]

      Chen M, Kutsanedzie F Y H, Cheng W, Li H H, Chen Q S. Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle‑dithizone nanosystem[J]. Microchem J., 2019,144:296-302. doi: 10.1016/j.microc.2018.09.022

    36. [36]

      He D Y, Wu Z Z, Cui B, Jin Z Y, Xu E B. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles[J]. Microchim. Acta, 2020,187:1-8. doi: 10.1007/s00604-019-3921-8

    37. [37]

      Long Q, Fang A J, Wen Y Q, Li H T, Zhang Y Y, Yao S Z. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect[J]. Biosens. Bioelectron., 2016,86:109-114. doi: 10.1016/j.bios.2016.06.017

    38. [38]

      Chen S, Yu Y L, Wang J H. Inner filter effect-based fluorescent sensing systems: A review[J]. Anal. Chim. Acta, 2018,999:13-26. doi: 10.1016/j.aca.2017.10.026

    39. [39]

      Liu Y, Ouyang Q, Li H H, Zhang Z Z, Chen Q S. Development of an inner filter effects-based upconversion nanoparticles-curcumin nanosystem for the sensitive sensing of fluoride ion[J]. ACS Appl. Mater. Interfaces, 2017,9(21):18314-18321. doi: 10.1021/acsami.7b04978

    40. [40]

      Wen S H, Zhou J J, Schuck P J, Suh Y D, Schmidt T W, Jin D Y. Future and challenges for hybrid upconversion nanosystems[J]. Nat. Photonics, 2019,13(12):828-838. doi: 10.1038/s41566-019-0528-x

    41. [41]

      Kim J S, Quang D T. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007,107(9):3780-3799. doi: 10.1021/cr068046j

    42. [42]

      Hakeem D A, Su S S, Mo Z R, Wen H L. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis[J]. Crit. Rev. Food Sci. Nutr., 2022,62(32):8866-8907. doi: 10.1080/10408398.2021.1937039

    43. [43]

      Wu Q Q, Fang A J, Li H T, Zhang Y Y, Yao S Z. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum[J]. Biosens. Bioelectron., 2016,77:957-962. doi: 10.1016/j.bios.2015.10.084

    44. [44]

      Yu Q R, He C X, Li Q, Zhou Y, Duan N, Wu S J. Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles[J]. Microchim. Acta, 2020,187:1-10. doi: 10.1007/s00604-019-3921-8

    45. [45]

      Wang L, Ahmad W, Wu J Z, Wang X N, Chen Q S, Ouyang Q. Selective detection of carbendazim using a upconversion fluorescence sensor modified by biomimetic molecularly imprinted polymers[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,284121457. doi: 10.1016/j.saa.2022.121457

    46. [46]

      Cao Y C, Hu X L, Zhao T, Mao Y H, Fang G Z, Wang S. A core-shell molecularly imprinted optical sensor based on the upconversion nanoparticles decorated with zinc-based metal-organic framework for selective and rapid detection of octopamine[J]. Sens. Actuator B-Chem., 2021,326128838. doi: 10.1016/j.snb.2020.128838

    47. [47]

      Saleh S M, Ali R, Wolfbeis O S. Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions[J]. Chem.-Eur. J., 2011,17(51):14611-14617. doi: 10.1002/chem.201101860

    48. [48]

      Liang T, Li Z, Song D, Shen L, Zhuang Q G, Liu Z H. Modulating the luminescence of upconversion nanoparticles with heavy metal ions: A new strategy for probe design[J]. Anal. Chem., 2016,88(20):9989-9995. doi: 10.1021/acs.analchem.6b01963

    49. [49]

      Gerelkhuu Z, Jung D, Huy B T, Tawfik S M, Conte M L, Conte E D, Lee Y. Highly selective and sensitive detection of catecholamines using NaLuGdF4∶Yb3+/Er3+ upconversion nanoparticles decorated with metal ions[J]. Sens. Actuator B-Chem., 2019,284:172-178. doi: 10.1016/j.snb.2018.12.135

    50. [50]

      Rong Y W, Hassan M M, Ouyang Q, Chen Q S. Lanthanide ion (Ln3+)-based upconversion sensor for quantification of food contaminants: A review[J]. Compr. Rev. Food. Sci. Food Saf., 2021,20(4):3531-3578. doi: 10.1111/1541-4337.12765

    51. [51]

      Zheng H Y, Sheng R, Li H H, Ahmad W, Chen Q S. Rapid and selective detection of Bacillus cereus in food using cDNA-based up‑conversion fluorescence spectrum copy and aptamer modified magnetic separation[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,267120618. doi: 10.1016/j.saa.2021.120618

    52. [52]

      Zhang Y W, Sun X, Si R, You L P, Yan C H. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor[J]. J. Am. Chem. Soc., 2005,127(10):3260-3261. doi: 10.1021/ja042801y

    53. [53]

      DaCosta M V, Doughan S, Han Y, Krull U J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review[J]. Anal. Chim. Acta, 2014,832:1-33. doi: 10.1016/j.aca.2014.04.030

    54. [54]

      Wang M, Zhang Y, Yao Q F, Ng M, Li X, Bhakoo K K, Chang A Y, Rosei F, Vetrone F. Morphology control of lanthanide doped NaGdF4 nanocrystals via one-step thermolysis[J]. Chem. Mater., 2019,31(14):5160-5171. doi: 10.1021/acs.chemmater.9b01155

    55. [55]

      Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties[J]. J. Am. Chem. Soc., 2006,128(19):6426-6436. doi: 10.1021/ja060212h

    56. [56]

      Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties[J]. Chem. Mat., 2013,25(1):106-112. doi: 10.1021/cm3033498

    57. [57]

      Zhao J X, Chen X, Chen B, Luo X, Sun T Y, Zhang W W, Wang C J, Lin J, Su D, Qiao X S, Wang F. Accurate control of core-shell upconversion nanoparticles through anisotropic strain engineering[J]. Adv. Funct. Mater., 2019,29(44)1903295. doi: 10.1002/adfm.201903295

    58. [58]

      Gnanasammandhan M K, Idris N M, Bansal A, Huang K, Zhang Y. Near-IR photoactivation using mesoporous silica-coated NaYF4∶Yb, Er/Tm upconversion nanoparticles[J]. Nat. Protoc., 2016,11(4):688-713. doi: 10.1038/nprot.2016.035

    59. [59]

      Stouwdam J W, van Veggel F C J M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles[J]. Nano Lett., 2002,2(7):733-737. doi: 10.1021/nl025562q

    60. [60]

      Heer S, Kompe K, Gudel H U, Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals[J]. Adv. Mater., 2004,16(23/24):2102-2105.

    61. [61]

      Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev., 2009,38(4):976-989. doi: 10.1039/b809132n

    62. [62]

      Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angew. Chem. Int. Ed., 2007,119(42):8122-8125. doi: 10.1002/ange.200702519

    63. [63]

      Wang M, Mi C C, Liu J L, Wu X L, Zhang Y X, Hou W, Li F, Xu S K. One-step synthesis and characterization of water-soluble NaYF4∶ Yb, Er/polymer nanoparticles with efficient up-conversion fluorescence[J]. J. Alloy. Compd., 2009,485(1/2):L24-L27.

    64. [64]

      Liang X, Wang X, Zhuang J, Peng Q, Li Y D. Branched NaYF4 nanocrystals with luminescent properties[J]. Inorg. Chem., 2007,46(15):6050-6055. doi: 10.1021/ic700523x

    65. [65]

      Pan Z F, Wen Y T, Wang T, Wang K, Teng Y J, Shao K. One-step synthesis of hollow PEI-NaBiF4∶Yb3+/Er3+ upconversion nanoparticles for water-responsive luminescent probe[J]. J. Rare Earths, 2020,38(4):362-368. doi: 10.1016/j.jre.2019.04.022

    66. [66]

      Wang G F, Qin W P, Wei G D, Wang L L, Zhu P F, Kim R J, Zhang D S, Ding F H, Zheng K Z. Synthesis and upconversion luminescence properties of YF3∶Yb3+/Tm3+ octahedral nanocrystals[J]. J. Fluor. Chem., 2009,130(2):158-161. doi: 10.1016/j.jfluchem.2008.09.009

    67. [67]

      Park H, Yoo G Y, Kim M S, Kim K, Lee C H, Park S N, Kim W O. Thin film fabrication of upconversion lanthanide-doped NaYF4 by a sol-gel method and soft lithographical nanopatterning[J]. J. Alloy. Compd., 2017,728:927-935. doi: 10.1016/j.jallcom.2017.09.076

    68. [68]

      Mi C C, Tian Z H, Cao C, Wang Z J, Mao C B, Xu S K. Novel microwave-assisted solvothermal synthesis of NaYF4∶Yb, Er upconversion nanoparticles and their application in cancer cell imaging[J]. Langmuir, 2011,27(23):14632-14637. doi: 10.1021/la204015m

    69. [69]

      Li D, Dong X T, Yu W S, Wang J X, Liu G X. Synthesis and upconversion luminescence properties of YF3∶Yb3+/Er3+ hollow nanofibers derived from Y2O3: Yb3+/Er3+ hollow nanofibers[J]. J. Nanopart. Res., 2013,15:1-10.

    70. [70]

      Boyer J C, Vetrone F, Cuccia L A, Capobianco J. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors[J]. J. Am. Chem. Soc., 2006,128(23):7444-7445. doi: 10.1021/ja061848b

    71. [71]

      Jin B R, Wang S R, Lin M, Lin M, Jin Y, Zhang S J, Cui X Y, Gong Y, Li A, Xu F, Lu T J. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection[J]. Biosens. Bioelectron., 2017,90:525-533. doi: 10.1016/j.bios.2016.10.029

    72. [72]

      Johnson N J J, Oakden W, Stanisz G J, Prosser R S, Veggel F C J M. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement[J]. Chem. Mat., 2011,23(16):3714-3722. doi: 10.1021/cm201297x

    73. [73]

      Malhotra K, Fuku R, Kumar B, Hrovat D, Houten J V, Piunno P A E, Gunning P T, Krull U J. Unlocking long-term stability of upconversion nanoparticles with biocompatible phosphonate-based polymer coatings[J]. Nano Lett., 2022,22(18):7285-7293. doi: 10.1021/acs.nanolett.2c00437

    74. [74]

      Johnson N J J, Sangeetha N M, Boyer J C, van Veggel F C J M. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4∶Yb3+/Er3+ nanoparticles[J]. Nanoscale, 2010,2(5):771-777. doi: 10.1039/b9nr00379g

    75. [75]

      Yang D M, Kang X J, Ma P A, Dai Y L, Hou Z Y, Cheng Z Y, Li C X, Lin J. Hollow structured upconversion luminescent NaYF4∶Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery[J]. Biomaterials, 2013,34(5):1601-1612. doi: 10.1016/j.biomaterials.2012.11.004

    76. [76]

      Kumar R, Nyk M, Ohulchanskyy T Y, Flask C A, Prasad P N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals[J]. Adv. Funct. Mater., 2009,19(6):853-859. doi: 10.1002/adfm.200800765

    77. [77]

      Bogdan N, Vetrone F, Ozin G A, Capobianco J A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J]. Nano Lett., 2011,11(2):835-840. doi: 10.1021/nl1041929

    78. [78]

      Sun C N, Simke J R J, Gradzielski M. An efficient synthetic strategy for ligand-free upconversion nanoparticles[J]. Mater. Adv., 2020,1(6):1602-1607. doi: 10.1039/D0MA00411A

    79. [79]

      Chen Z G, Chen H L, Hu H, Yu M X, Li F Y, Zhang Q, Zhou Z G, Huang C H. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels[J]. J. Am. Chem. Soc., 2008,130(10):3023-3029. doi: 10.1021/ja076151k

    80. [80]

      Sivakumar S, Diamente P R, van Veggel F C J M. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down-and upconverting biolabels[J]. Chem.-Eur. J., 2006,12(22):5878-5884. doi: 10.1002/chem.200600224

    81. [81]

      Sun L L, Wang T, Sun Y Z, Li Z X, Song H N, Zhang B, Zhou G J, Zhou H F, Hu J F. Fluorescence resonance energy transfer between NH2-NaYF4∶Yb, Er/NaYF4@SiO2 upconversion nanoparticles and gold nanoparticles for the detection of glutathione and cadmium ions[J]. Talanta, 2020,207120294. doi: 10.1016/j.talanta.2019.120294

    82. [82]

      Mukhopadhyay L, Rai V K. Colloidal stability and optical thermometry in mesoporous silica coated phosphate based upconverting nanoparticles[J]. J. Alloy. Compd., 2021,878160351. doi: 10.1016/j.jallcom.2021.160351

    83. [83]

      Wang L, Zhao W J, Tan W H. Bioconjugated silica nanoparticles: Development and applications[J]. Nano Res., 2008,1:99-115. doi: 10.1007/s12274-008-8018-3

    84. [84]

      Li Z Q, Wang L M, Wang Z Y, Liu X H, Xiong Y J. Modification of NaYF4∶Yb, Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions[J]. J. Phys. Chem. C, 2011,115(8):3291-3296. doi: 10.1021/jp110603r

    85. [85]

      Zhang Z M, Wang J, Song Y X, Wang Z K, Dong M D, Liu L. Disassembly of Alzheimer's amyloid fibrils by functional upconversion nanoparticles under near-infrared light irradiation[J]. Colloid Surf. B-Biointerfaces, 2019,181:341-348. doi: 10.1016/j.colsurfb.2019.05.053

    86. [86]

      Yang J P, Deng Y H, Wu Q L, Zhou J, Bao H F, Li Q, Zhang F, Li F Y, Tu B, Zhao D Y. Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation[J]. Langmuir, 2010,26(11):8850-8856. doi: 10.1021/la904596x

    87. [87]

      Chu Z Y, Chen H, Wang P, Wang W N, Yang J, Sun J N, Chen B J, Zha Z B, Wang H, Qian H S. Phototherapy using a fluoroquinolone antibiotic drug to suppress tumor migration and proliferation and to enhance apoptosis[J]. ACS Nano, 2022,16(3):4917-4929. doi: 10.1021/acsnano.2c00854

    88. [88]

      Wang L Y, Yan R X, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles[J]. Angew. Chem. Int. Ed., 2005,44(37):6054-6057. doi: 10.1002/anie.200501907

    89. [89]

      Bao Y, Luu Q A N, Lin C, Schloss J M, May P S, Jiang C Y. Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals[J]. J. Mater. Chem., 2010,20(38):8356-8361. doi: 10.1039/c0jm01602k

    90. [90]

      Li X H, Wu Y Q, Liu Y, Zou X M, Yao L M, Li F Y, Feng W. Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water[J]. Nanoscale, 2014,6(2):1020-1028. doi: 10.1039/C3NR05195A

    91. [91]

      Ho C S, Jean N, Hogan C A, Blackmon L, Jeffrey S S, Holodniy M, Banaei N, Saleh A A E, Ermon S, Dionne J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nat. Commun., 2019,10(1)4927. doi: 10.1038/s41467-019-12898-9

    92. [92]

      Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a "sandwich" oligonucleotide hybridization and fluorescence resonance energy transfer process using an Ln(Ⅲ)-MOF and Ag nanoparticles for early cancer diagnosis: Application of central composite design[J]. ACS Appl. Mater. Interfaces, 2020,12(14):16076-16087. doi: 10.1021/acsami.0c00891

    93. [93]

      Yu L, Chen H X, Yue J, Chen X F, Sun M T, Hou J, Alamry K A, Marwani H M, Wang X K, Wang S H. Europium metal-organic framework for selective and sensitive detection of doxycycline based on fluorescence enhancement[J]. Talanta, 2020,207120297. doi: 10.1016/j.talanta.2019.120297

    94. [94]

      Kumar M, Zhang P. Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles[J]. Biosens. Bioelectron., 2010,25(11):2431-2435. doi: 10.1016/j.bios.2010.03.038

    95. [95]

      Zhang K Y, Zhu G, Wei Y L, Zhang L, Shen Y Z. Engineering of an upconversion luminescence sensing platform based on the competition effect for mercury-ion monitoring in green tea[J]. J. Agric. Food Chem., 2021,69(30):8565-8570. doi: 10.1021/acs.jafc.1c03100

    96. [96]

      Yang C C, Li Y Y, Wu N, Zhang Y C, Feng W, Yu M M, Li Z X. Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging[J]. Sens. Actuator B-Chem., 2021,326128841. doi: 10.1016/j.snb.2020.128841

    97. [97]

      Xu Y, Kutsanedzie F Y H, Ali S, Wang P Y, Li C Y, Ouyang Q, Li H H, Chen Q S. Cysteamine-mediated upconversion sensor for lead ion detection in food[J]. J. Food Meas. Charact., 2021,15:4849-4857. doi: 10.1007/s11694-021-01054-x

    98. [98]

      Zhang Y, Wu L Q, Tang Y R, Su Y Y, Lv Y. An upconversion fluorescence based turn-on probe for detecting lead(Ⅱ) ions[J]. Anal. Methods, 2014,6(22):9073-9077. doi: 10.1039/C4AY01882F

    99. [99]

      Wang Y, Lv M H, Chen Z H, Deng Z L, Liu N T, Fan J W, Zhang W X. A fluorescence resonance energy transfer probe based on DNA-modified upconversion and gold nanoparticles for detection of lead ions[J]. Front. Chem., 2020,8238. doi: 10.3389/fchem.2020.00238

    100. [100]

      Jiang X M, Meng G W. A rhodamine-based sensing probe excited by upconversion NaYF4∶Yb3+/Er3+ nanoparticles: The realization of simple Cu(Ⅱ) detection with high sensitivity and unique selectivity[J]. J. Lumines., 2013,135:227-231. doi: 10.1016/j.jlumin.2012.10.011

    101. [101]

      Su S S, Mo Z R, Tan G Z, Wen H L, Chen X, Hakeem D A. PAA modified upconversion nanoparticles for highly selective and sensitive detection of Cu2+ ions[J]. Front. Chem., 2021,8619764. doi: 10.3389/fchem.2020.619764

    102. [102]

      Wang X D, Zhang X R, Huang D X, Zhao T Y, Zhao L L, Fang X K, Yang C H, Chen G Y. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level[J]. Anal. Chem., 2021,93(34):11686-11691. doi: 10.1021/acs.analchem.1c01311

    103. [103]

      Liu Y X, Jiang A Q, Jia Q, Zhai X J, Liu L D, Ma L Y, Zhou J. Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics[J]. Chem. Sci., 2018,9(23):5242-5251. doi: 10.1039/C8SC00670A

    104. [104]

      Han J F, Zhang C, Liu F, Liu B H, Han M Y, Zou W S, Yang L, Zhang Z P. Upconversion nanoparticles for ratiometric fluorescence detection of nitrite[J]. Analyst, 2014,139(12):3032-3038. doi: 10.1039/C4AN00402G

    105. [105]

      Chen H Q, Tang W, Liu Y C, Wang L. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF4∶Yb, Tm@ NaYF4 upconversion nanoparticles composite luminescent probe[J]. Food Chem., 2022,367130660. doi: 10.1016/j.foodchem.2021.130660

    106. [106]

      Nathan C, Cunningham-Bussel A. Beyond oxidative stress: An immunologist's guide to reactive oxygen species[J]. Nat. Rev. Immunol., 2013,13(5):349-361. doi: 10.1038/nri3423

    107. [107]

      Li Z, Liang T, Lv S W, Zhuang Q G, Liu Z H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical[J]. J. Am. Chem. Soc., 2015,137(34):11179-11185. doi: 10.1021/jacs.5b06972

    108. [108]

      Liu Y X, Jia Q, Guo Q W, Jiang A Q, Zhou J. In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes[J]. Anal. Chem., 2017,89(22):12299-12305. doi: 10.1021/acs.analchem.7b03270

    109. [109]

      Jia Q, Liu Y X, Duan Y, Zhou J. Interference-free detection of hydroxyl radical and arthritis diagnosis by rare earth-based nanoprobe utilizing SWIR emission as reference[J]. Anal. Chem., 2019,91(17):11433-11439. doi: 10.1021/acs.analchem.9b02855

    110. [110]

      Wang H, Wang Z H, Li Y K, Xu T, Zhang Q, Yang M, Wang P, Gu Y Q. A novel theranostic nanoprobe for in vivo singlet oxygen detection and real-time dose-effect relationship monitoring in photodynamic therapy[J]. Small, 2019,15(39)1902185. doi: 10.1002/smll.201902185

    111. [111]

      Wang H, Li Y K, Yang M, Wang P, Gu Y Q. FRET-based upconversion nanoprobe sensitized by Nd3+ for the ratiometric detection of hydrogen peroxide in vivo[J]. ACS Appl. Mater. Interfaces, 2019,11(7):7441-7449. doi: 10.1021/acsami.8b21549

    112. [112]

      Li J, Huang X W, Chen J Y, Lou Z Z, Li B J. Non-metallic plasmon-assisted upconversion fluorescence for ultrasensitive hydrogen peroxide detection from nM to μM[J]. Nanoscale, 2024,16(18):9029-9035. doi: 10.1039/D4NR00344F

    113. [113]

      Feng Y N, Lei D, Zu B Y, Li J G, Li Y J, Dou X C. A self-accelerating naphthalimide-based probe coupled with upconversion nanoparticles for ultra-accurate tri-mode visualization of hydrogen peroxide[J]. Adv. Sci., 20242309182.

    114. [114]

      Wang N N, Yu X Y, Zhang K, Mirkin C A, Li J S. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide[J]. J. Am. Chem. Soc., 2017,139(36):12354-12357. doi: 10.1021/jacs.7b06059

    115. [115]

      Zhu J W, Yu N, Bao C Q, Shi H F, Li Qiang, Dai K, Jiang C L. Upconversion-based intelligent dual-mode hydrogel nanosensor for visual quantitative detection of formaldehyde[J]. Chem. Eng. J., 2024,480148106. doi: 10.1016/j.cej.2023.148106

    116. [116]

      Zhang C L, Ling X, Mei Q S, He H B, Deng S S, Zhang Y. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide[J]. Analyst, 2020,145(2):537-543. doi: 10.1039/C9AN01725A

    117. [117]

      Wang N N, Li Z H, Liu W, Deng T, Yang J F, Yang R H, Li J S. Upconversion nanoprobes for in vitro and ex vivo measurement of carbon monoxide[J]. ACS Appl. Mater. Interfaces, 2019,11(30):26684-26689. doi: 10.1021/acsami.9b08549

    118. [118]

      Ye M N, Zhang J, Jiang D T, Tan Q, Li J Y, Yao C, Zhu C J, Zhou Y. A hemicyanine-assembled upconversion nanosystem for NIR-excited visualization of carbon monoxide bio-signaling in vivo[J]. Small, 2022,18(28)2202263. doi: 10.1002/smll.202202263

    119. [119]

      Gao M P, Wu R Y, Mei Q S, Zhang C L, Lin G X, Deng S S, He H B, Zhang Y. Upconversional nanoprobes with highly efficient energy transfer for ultrasensitive detection of alkaline phosphatase[J]. ACS Sen., 2019,4(11):2864-2868. doi: 10.1021/acssensors.9b00858

    120. [120]

      Guo Y Y, Zhao T L, Guo Q N, Ding M J, Chen X R, Lin J Q. A ligand-free up-conversion nanoplatform based on enzyme cascade amplification strategy for highly sensitive detection of alkaline phosphatase[J]. Microchem. J., 2023,193109170. doi: 10.1016/j.microc.2023.109170

    121. [121]

      Guo T, Deng Q L, Fang G Z, Ma L, Wang S. Fluorescence sensor based on molecularly imprinted polymers and core-shell upconversion nanoparticles@metal-organic frameworks for detection of bovine serum albumin[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,279121460. doi: 10.1016/j.saa.2022.121460

    122. [122]

      Chen J R, Ho W K H, Yin B H, Zhang Q, Li C Q, Yan J X, Huang Y Y, Hao J H, Yi C Q, Zhang Y, Wong S H D, Yang M. Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein[J]. Biosens. Bioelectron., 2024,248115969. doi: 10.1016/j.bios.2023.115969

    123. [123]

      Brandmeier J C, Jurga N, Grzyb T, Hlavacek A, Oborilova R, Farke Z, Gorris H H. Digital and analog detection of SARS-CoV-2 nucleocapsid protein via an upconversion-linked immunosorbent assay[J]. Anal. Chem., 2023,95(10):4753-4759. doi: 10.1021/acs.analchem.2c05670

    124. [124]

      Pan L P, Huang K L, Min G Z, Li X B, Shao J J, Ma F X, Kong L Q, Zou M Y, Meng G Q, Chen W, Yang L K, Liu X Y, Li N B. Upconversion-luminescent optical fiber probe for in situ tyrosinase monitoring[J]. Sens. Actuator B-Chem., 2022,358131474. doi: 10.1016/j.snb.2022.131474

    125. [125]

      Wu B, Cao Z Q, Zhang Q, Wang G J. NIR-responsive DNA hybridization detection by high efficient FRET from 10-nm upconversion nanoparticles to SYBR green Ⅰ[J]. Sens. Actuator B-Chem., 2018,255:2853-2860. doi: 10.1016/j.snb.2017.09.103

    126. [126]

      Lan J M, Liu Y X, Li L, Wen F D, Wu F, Han Z Z, Sun W M, Li C Y, Chen J H. A upconversion luminescene biosensor based on dual-signal amplification for the detection of short DNA species of c-erbB-2 oncogene[J]. Sci. Rep., 2016,6(1)24813. doi: 10.1038/srep24813

    127. [127]

      Ren H, Long Z, Shen X T, Zhang Y, Sun J H, Ouyang J, Na N. Sandwich DNA hybridization fluorescence resonance energy-transfer strategy for miR-122 detection by core-shell upconversion nanoparticles[J]. ACS Appl. Mater. Interfaces, 2018,10(30):25621-25628. doi: 10.1021/acsami.8b03429

    128. [128]

      Wang G, Fu Y K, Ren Z H, Huang J, Best S, Li X, Han G R. Upconversion nanocrystal 'armoured' silica fibres with superior photoluminescence for miRNA detection[J]. Chem. Commun., 2018,54(49):6324-6327. doi: 10.1039/C8CC03480J

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    13. [13]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    15. [15]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    16. [16]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    17. [17]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(0)
  • Abstract views(50)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return