Citation: Yongjie ZHANG, Bintong HUANG, Yueming ZHAI. Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247 shu

Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles

Figures(6)

  • In biological fluids, proteins bind to the surface of nanoparticles to form a coating named the protein corona, which can dramatically change their physicochemical properties and affect interactions with living systems. Understanding the formation mechanism and dynamic changes of protein corona can help optimize the design of nanoparticles, improve the targeting and effectiveness of nanomedicines, and reduce side effects. In this review, we first reviewed the progress of protein corona and highlighted the properties of protein corona, the factors influencing their formation, and the analytical techniques for probing the protein corona. Finally, we share our perspective on the challenges and opportunities of protein corona in characterization methods and controlling their formation and composition. This review will contribute to understanding protein corona for the development and application of nanomedicine and biotechnology.
  • 加载中
    1. [1]

      Hajipour M J, Safavi-Sohi R, Sharifi S, Mahmoud N, Ashkarran A A, Voke E, Serpooshan V, Ramezankhani M, Milani A S, Landry M P, Mahmoudi M. An overview of nanoparticle protein corona literature[J]. Small, 2023,19(36)2301838. doi: 10.1002/smll.202301838

    2. [2]

      Mahmoudi M, Landry M P, Moore A, Coreas R. The protein corona from nanomedicine to environmental science[J]. Nat. Rev. Mater., 2023,8(7):422-438. doi: 10.1038/s41578-023-00552-2

    3. [3]

      Yang M, Wu E, Tang W J, Qian J, Zhan C Y. Interplay between nanomedicine and protein corona[J]. J. Mater. Chem. B, 2021,9(34):6713-6727. doi: 10.1039/D1TB01063H

    4. [4]

      Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat. Mater., 2009,8(7):543-557. doi: 10.1038/nmat2442

    5. [5]

      Ke P C, Lin S, Parak W J, Davis T P, Caruso F. A decade of the protein corona[J]. ACS Nano, 2017,11(12):11773-11776. doi: 10.1021/acsnano.7b08008

    6. [6]

      Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer S K, Stauber R H. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology[J]. Nat. Nanotechnol., 2013,8(10):772-781. doi: 10.1038/nnano.2013.181

    7. [7]

      Hadjidemetriou M, Kostarelos K. Evolution of the nanoparticle corona[J]. Nat. Nanotechnol., 2017,12(4):288-290. doi: 10.1038/nnano.2017.61

    8. [8]

      Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson K A, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proc. Natl. Acad. Sci. U. S. A., 2007,104(7):2050-2055. doi: 10.1073/pnas.0608582104

    9. [9]

      Bangham A D, Pethica B A, Seaman G V F. The charged groups at the interface of some blood cells[J]. Biochem. J., 1958,69(1):12-19. doi: 10.1042/bj0690012

    10. [10]

      Vroman L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids[J]. Nature, 1962,196(4853):476-477. doi: 10.1038/196476a0

    11. [11]

      Weber C, Voigt M, Simon J, Danner A K, Frey H, Mailänder V, Helm M, Morsbach S, Landfester K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona[J]. Biomacromolecules, 2019,20(8):2989-2999. doi: 10.1021/acs.biomac.9b00539

    12. [12]

      Tang H, Zhang Y, Yang T, Wang C, Zhu Y H, Qiu L J, Liu J H, Song Y, Zhou L, Zhang J Z, Wong Y K, Liu Y F, Xu C C, Wang H F, Wang J G. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona[J]. Nat. Nanotechnol., 2023,18(9):1067-1077. doi: 10.1038/s41565-023-01455-7

    13. [13]

      Wheeler K E, Chetwynd A J, Fahy K M, Hong B S, Tochihuitl J A, Foster L A, Lynch I. Environmental dimensions of the protein corona[J]. Nat. Nanotechnol., 2021,16(6):617-629. doi: 10.1038/s41565-021-00924-1

    14. [14]

      Baimanov D, Wang J, Zhang J, Liu K, Cong Y L, Shi X M, Zhang X H, Li Y F, Li X M, Qiao R R, Zhao Y L, Zhou Y L, Wang L M, Chen C Y. In situ analysis of nanoparticle soft corona and dynamic evolution[J]. Nat. Commun., 2022,13(1)5389. doi: 10.1038/s41467-022-33044-y

    15. [15]

      Casals E, Pfaller T, Duschl A, Oostingh G J, Puntes V. Time evolution of the nanoparticle protein corona[J]. ACS Nano, 2010,4(7):3623-3632. doi: 10.1021/nn901372t

    16. [16]

      Trinh D N, Gardner R A, Franciosi A N, Mccarthy C, Keane M P, Soliman M G, O'donnell J S, Meleady P, Spencer D I R, Monopoli M P. Nanoparticle biomolecular corona-based enrichment of plasma glycoproteins for N-glycan profiling and application in biomarker discovery[J]. ACS Nano, 2022,16(4):5463-5475. doi: 10.1021/acsnano.1c09564

    17. [17]

      Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation[J]. Nanoscale, 2020,12(18):10240-10253. doi: 10.1039/D0NR02788J

    18. [18]

      Chantada-Vázquez M D P, Castro López A, García‑Vence M, Acea-Nebril B, Bravo S B, Núñez C. Protein corona gold nanoparticles fingerprinting reveals a profile of blood coagulation proteins in the serum of HER2-overexpressing breast cancer patients[J]. Int. J. Mol. Sci., 2020,21(22):8449-8467. doi: 10.3390/ijms21228449

    19. [19]

      Blume J E, Manning W C, Troiano G, Hornburg D, Figa M, Hesterberg L, Platt T L, Zhao X, Cuaresma R A, Everley P A, Ko M, Liou H, Mahoney M, Ferdosi S, Elgierari E M, Stolarczyk C, Tangeysh B, Xia H, Benz R, Siddiqui A, Carr S A, Ma P, Langer R, Farias V, Farokhzad O C. Rapid, deep and precise profiling of the plasma proteome with multi‑nanoparticle protein corona[J]. Nat. Commun., 2020,11(1)3662. doi: 10.1038/s41467-020-17033-7

    20. [20]

      Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake[J]. Biomacromolecules, 2015,16(4):1311-1321. doi: 10.1021/acs.biomac.5b00108

    21. [21]

      Ge C C, Du J F, Zhao L N, Wang L M, Liu Y, Li D H, Yang Y L, Zhou R H, Zhao Y L, Chai Z F, Chen C Y. Binding of blood proteins to carbon nanotubes reduces cytotoxicity[J]. Proc. Natl. Acad. Sci. U. S. A., 2011,108(41):16968-16973. doi: 10.1073/pnas.1105270108

    22. [22]

      López-Estévez A M, Lapuhs P, Pineiro-Alonso L, Alonso M J. Personalized cancer nanomedicine: Overcoming biological barriers for intracellular delivery of biopharmaceuticals[J]. Adv. Mater., 2024,36(14)2309355. doi: 10.1002/adma.202309355

    23. [23]

      Visalakshan R M, García L E G, Benzigar M R, Ghazaryan A, Simon J, Mierczynska‑Vasilev A, Michl T D, Vinu A, Mailänder V, Morsbach S, Landfester K, Vasilev K. The influence of nanoparticle shape on protein corona formation[J]. Small, 2020,16(25)2000285. doi: 10.1002/smll.202000285

    24. [24]

      Weiss A C G, Kelly H G, Faria M, Besford Q A, Wheatley A K, Ang C S, Crampin E J, Caruso F, Kent S J. Link between low-fouling and stealth: A whole blood biomolecular corona and cellular association analysis on nanoengineered particles[J]. ACS Nano, 2019,13(5):4980-4991. doi: 10.1021/acsnano.9b00552

    25. [25]

      Pinals R L, Yang D, Rosenberg D J, Chaudhary T, Crothers A R, Iavarone A T, Hammel M, Landry M P. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments[J]. Angew. Chem. Int. Ed., 2020,59(52):23668-23677. doi: 10.1002/anie.202008175

    26. [26]

      Ashby J, Pan S Q, Zhong W W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona[J]. ACS Appl. Mater. Interfaces, 2014,6(17):15412-15419. doi: 10.1021/am503909q

    27. [27]

      Piella J, Bastús N G, Puntes V. Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona[J]. Bioconjugate Chem., 2017,28(1):88-97. doi: 10.1021/acs.bioconjchem.6b00575

    28. [28]

      Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer S K, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber R H. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis[J]. ACS Nano, 2011,5(9):7155-7167. doi: 10.1021/nn201950e

    29. [29]

      Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation[J]. WIREs Nanomed. Nanobiotechnol., 2022,14e1788. doi: 10.1002/wnan.1788

    30. [30]

      Diloknawarit B, Lee K, Choo P, Odom T W. Nanoparticle anisotropy increases targeting interactions on live-cell membranes[J]. ACS Nano, 2024,18(19):12537-12546. doi: 10.1021/acsnano.4c02700

    31. [31]

      Bewersdorff T, Glitscher E A, Bergueiro J, Eravci M, Miceli E, Haase A, Calderón M. The influence of shape and charge on protein corona composition in common gold nanostructures[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020,117111270. doi: 10.1016/j.msec.2020.111270

    32. [32]

      Wang G K, Wang W L, Shangguan E, Gao S Y, Liu Y F. Effects of gold nanoparticle morphologies on interactions with proteins[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020,111110830. doi: 10.1016/j.msec.2020.110830

    33. [33]

      Tukova A, Nie Y H, Yaraki M T, Tran N T, Wang J Q, Rodger A, Gu Y T, Wang Y L. Shape dependent protein-induced stabilization of gold nanoparticles: From a protein corona perspective[J]. Aggregate, 2023,4(4)e323. doi: 10.1002/agt2.323

    34. [34]

      Choo P, Liu T T, Odom T W. Nanoparticle shape determines dynamics of targeting nanoconstructs on cell membranes[J]. J. Am. Chem. Soc., 2021,143(12):4550-4555. doi: 10.1021/jacs.1c00850

    35. [35]

      García-Álvarez R, Hadjidemetriou M, Sánchez-Iglesias A, Liz-Marzán L M, Kostarelos K. In vivo formation of protein corona on gold nanoparticles[J]. The effect of their size and shape. Nanoscale, 2018,10(3):1256-1264.

    36. [36]

      Liu Z Y, Zhan X H, Yang M G, Yang Q, Xu X H, Lan F, Wu Y, Gu Z W. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors[J]. Nanoscale, 2016,8(14):7544-7555. doi: 10.1039/C5NR08447D

    37. [37]

      Du T T, Shi G L, Liu F F, Zhang T, Chen W. Sulfidation of Ag and ZnO nanomaterials significantly affects protein corona composition: Implications for human exposure to environmentally aged nanomaterials[J]. Environ. Sci. Technol., 2019,53(24):14296-14307. doi: 10.1021/acs.est.9b04332

    38. [38]

      Liu W, Worms I A M, Herlin-Boime N, Truffier-Boutry D, Michaud-Soret I, Mintz E, Vidaud C, Rollin-Genetet F. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: Impact on metal substitution by Ag􀃬, corona formation and enzymatic activity[J]. Nanoscale, 2017,9(19):6581-6594. doi: 10.1039/C7NR01075C

    39. [39]

      Walkey C D, Olsen J B, Guo H B, Emili A, Chan W C W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. J. Am. Chem. Soc., 2012,134(4):2139-2147. doi: 10.1021/ja2084338

    40. [40]

      Andrzejewska W, Peplińska B, Litowczenko J, Obstarczyk P, Olesiak-Bańska J, Jurga S, Lewandowski M. SARS-CoV-2 virus-like particles with plasmonic Au cores and S1-spike protein coronas[J]. ACS Synth. Biol., 2023,12(8):2320-2328. doi: 10.1021/acssynbio.3c00133

    41. [41]

      Di Silvio D, Silvestri A, Lay L, Polito L, Moya S E. Impact of aoncanavalinA affinity in the intracellular fate of protein corona on glucosamine Au nanoparticles[J]. Sci. Rep., 2018,8(1)9046. doi: 10.1038/s41598-018-27418-w

    42. [42]

      Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential[J]. Biomaterials, 2007,28(31):4600-4607. doi: 10.1016/j.biomaterials.2007.07.029

    43. [43]

      Wu L J, Fu F Q, Wang W H, Wang W H, Huang Z W, Huang Y, Pan X, Wu C B. Plasma protein corona forming upon fullerene nanocomplex: impact on both counterparts[J]. Particuology, 2023,73:26-36. doi: 10.1016/j.partic.2022.04.006

    44. [44]

      Baimanov D, Wang L M, Liu K, Pan M M, Cai R, Yuan H, Huang W X, Yuan Q X, Zhou Y L, Chen C Y, Zhao Y L. Stereoselective coronas regulate the fate of chiral gold nanoparticles in vivo[J]. Nanoscale Horiz., 2023,8(7):859-869. doi: 10.1039/D3NH00124E

    45. [45]

      Oberländer J, Champanhac C, Da Costa Marques R, Landfester K, Mailänder V. Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles[J]. Acta Biomater., 2022,148:271-278. doi: 10.1016/j.actbio.2022.06.028

    46. [46]

      Sheibani S, Basu K, Farnudi A, Ashkarran A, Ichikawa M, Presley J F, Bui K H, Ejtehadi M R, Vali H, Mahmoudi M. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation[J]. Nat. Commun., 2021,12(1)573. doi: 10.1038/s41467-020-20884-9

    47. [47]

      Zhang Q F, Hernandez T, Smith K W, Jebeli S A H, Dai A X, Warning L, Baiyasi R, Mccarthy L A, Guo H, Chen D H, Dionne J A, Landes C F, Link S. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes[J]. Science, 2019,365(6460):1475-1478. doi: 10.1126/science.aax5415

    48. [48]

      Qu S H, Qiao Z H, Zhong W C, Liang K Q, Jiang X, Shang L. Chirality-dependent dynamic evolution of the protein corona on the surface of quantum dots[J]. ACS Appl. Mater. Interfaces, 2022,14(39):44147-44157. doi: 10.1021/acsami.2c11874

    49. [49]

      De Sousa M, Martins C H Z, Franqui L S, Fonseca L C, Delite F S, Lanzoni E M, Martinez D S T, Alves O L. Covalent functionalization of graphene oxide with D-mannose: Evaluating the hemolytic effect and protein corona formation[J]. J. Mater. Chem. B, 2018,6(18):2803-2812. doi: 10.1039/C7TB02997G

    50. [50]

      Mo J B, Xie Q Y, Wei W, Zhao J. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona[J]. Nat. Commun., 2018,9(1)2480. doi: 10.1038/s41467-018-04873-7

    51. [51]

      Lei L, Zhang S Y, Zhang X J, Qin B, Deng S, Zhao Q, Xing B S. Concentration-dependent layer exfoliation of black phosphorus by human serum albumin and its corresponding biocompatibility change[J]. Environ. Sci. Technol., 2023,57(48):20118-20126. doi: 10.1021/acs.est.3c03739

    52. [52]

      Xu L G, Wang X X, Wang W W, Sun M Z, Choi W J, Kim J Y, Hao C L, Li S, Qu A H, Lu M, Wu X R, Colombari F M, Gomes W R, Blanco A L, De Moura A F, Guo X, Kuang H, Kotov N A, Xu C L. Enantiomer-dependent immunological response to chiral nanoparticles[J]. Nature, 2022,601(7893):366-373. doi: 10.1038/s41586-021-04243-2

    53. [53]

      Pustulka S M, Ling K, Pish S L, Champion J A. Protein nanoparticle charge and hydrophobicity govern protein corona and macrophage uptake[J]. ACS Appl. Mater. Interfaces, 2020,12(43):48284-48295. doi: 10.1021/acsami.0c12341

    54. [54]

      Liang L, Everest-Dass A V, Kostyuk A B, Khabir Z, Zhang R, Trushina D B, Zvyagin A V. The surface charge of polymer-coated upconversion nanoparticles determines protein corona properties and cell recognition in serum solutions[J]. Cells, 2022,11(22)3644. doi: 10.3390/cells11223644

    55. [55]

      Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots[J]. Nanoscale, 2022,14(39):14695-14710. doi: 10.1039/D2NR03611H

    56. [56]

      Wang G K, Yan C L, Gao S Y, Liu Y F. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2019,103109856. doi: 10.1016/j.msec.2019.109856

    57. [57]

      Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy[J]. Adv. Drug Delivery Rev., 2011,63(1):24-46.

    58. [58]

      Yang H Y, Hao C C, Nan Z Z, Sun R G. Bovine hemoglobin adsorption onto modified silica nanoparticles: Multi-spectroscopic measurements based on kinetics and protein conformation[J]. Int. J. Biol. Macromol., 2020,155:208-215. doi: 10.1016/j.ijbiomac.2020.03.211

    59. [59]

      Hajipour M J, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: A "key" factor at the nanobiointerface[J]. Biomater. Sci., 2014,2(9):1210-1221. doi: 10.1039/C4BM00131A

    60. [60]

      Sodipo B K, Aziz A A. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica[J]. J. Magn. Magn. Mater., 2016,416:275-291. doi: 10.1016/j.jmmm.2016.05.019

    61. [61]

      Giulimondi F, Vulpis E, Digiacomo L, Giuli M V, Mancusi A, Capriotti A L, Laganà A, Cerrato A, Zenezini Chiozzi R, Nicoletti C, Amenitsch H, Cardarelli F, Masuelli L, Bei R, Screpanti I, Pozzi D, Zingoni A, Checquolo S, Caracciolo G. Opsonin‑deficient nucleoproteic corona endows unPEGylated liposomes with stealth properties in vivo[J]. ACS Nano, 2022,16(2):2088-2100. doi: 10.1021/acsnano.1c07687

    62. [62]

      Dridi N, Jin Z C, Perng W, Mattoussi H. Probing protein corona formation around gold nanoparticles: Effects of surface coating[J]. ACS Nano, 2024,18(12):8649-8662. doi: 10.1021/acsnano.3c08005

    63. [63]

      Piloni A, Wong C K, Chen F, Lord M, Walther A, Stenzel M H. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake[J]. Nanoscale, 2019,11(48):23259-23267. doi: 10.1039/C9NR06835J

    64. [64]

      Li M Y, Jin X Y, Liu T, Fan F, Gao F, Chai S, Yang L H. Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A‑Ⅰ in corona formation[J]. Nat. Commun., 2022,13(1)4137. doi: 10.1038/s41467-022-31882-4

    65. [65]

      Levi M. Hemostasis and thrombosis in extreme temperatures (hypo- and hyperthermia)[J]. Semin. Thromb. Hemost., 2018,44(7):651-655. doi: 10.1055/s-0038-1648231

    66. [66]

      Wu J W, Xing L Y, Zheng Y X, Yu Y L, Wu R N, Liu X, Li L, Huang Y. Disease-specific protein corona formed in pathological intestine enhances the oral absorption of nanoparticles[J]. Acta Pharm. Sin. B, 2023,13(9):3876-3891. doi: 10.1016/j.apsb.2023.02.012

    67. [67]

      Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal A K, Bera K, Maiti N C. Naringenin-functionalized gold nanoparticles and their role in α-synuclein stabilization[J]. Langmuir, 2023,39(21):7231-7248. doi: 10.1021/acs.langmuir.2c03259

    68. [68]

      Davis A A, Leyns C E G, Holtzman D M. Intercellular spread of protein aggregates in neurodegenerative disease[J]. Annu. Rev. Cell Dev. Biol., 2018,34:545-568. doi: 10.1146/annurev-cellbio-100617-062636

    69. [69]

      Siani P, Di Valentin C. Effect of dopamine-functionalization, charge and pH on protein corona formation around TiO2 nanoparticles[J]. Nanoscale, 2022,14(13):5121-5137. doi: 10.1039/D1NR07647G

    70. [70]

      Lee H. Separation of protein corona from nanoparticles under intracellular acidic conditions: Effect of protonation on nanoparticle-protein and protein-protein interactions[J]. Phys. Chem. Chem. Phys., 2024,26(5):4000-4010. doi: 10.1039/D3CP04887J

    71. [71]

      Shan H H, Zhao Q R, Guo Y, Gao M C, Xu X, Mcclements D J, Cao C G, Yuan B. Impact of pH on the formation and properties of whey protein coronas around TiO2 nanoparticles[J]. J. Agric. Food. Chem., 2023,71(14):5756-5769. doi: 10.1021/acs.jafc.3c00073

    72. [72]

      Wang W H, Huang Z W, Li Y B, Wang W H, Shi J Y, Fu F Q, Huang Y, Pan X, Wu C B. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study[J]. Acta Pharm. Sin. B, 2021,11(4):1030-1046. doi: 10.1016/j.apsb.2020.10.023

    73. [73]

      Weber C, Morsbach S, Landfester K. Possibilities and limitations of different separation techniques for the analysis of the protein corona[J]. Angew. Chem. Int. Ed., 2019,58(37):12787-12794. doi: 10.1002/anie.201902323

    74. [74]

      Podila R, Vedantam P, Ke P C, Brown J M, Rao A M. Evidence for charge-transfer-induced conformational changes in carbon nanostructure-protein corona[J]. J. Phys. Chem. C, 2012,116(41):22098-22103. doi: 10.1021/jp3085028

    75. [75]

      Wang M, Gustafsson O J R, Siddiqui G, Javed I, Kelly H G, Blin T, Yin H, Kent S J, Creek D J, Kempe K, Ke P C, Davis T P. Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline)[J]. Nanoscale, 2018,10(23):10863-10875. doi: 10.1039/C8NR00835C

    76. [76]

      Cedervall T, Lynch I, Foy M, Berggård T, Donnelly S C, Cagney G, Linse S, Dawson K A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles[J]. Angew. Chem. Int. Ed., 2007,46(30):5754-5756. doi: 10.1002/anie.200700465

    77. [77]

      Chu Y X, Tang W J, Zhang Z, Li C, Qian J, Wei X L, Ying T L, Lu W Y, Zhan C Y. Deciphering protein corona by scFv-based affinity chromatography[J]. Nano Lett., 2021,21(5):2124-2131. doi: 10.1021/acs.nanolett.0c04806

    78. [78]

      Hoang K N L, Wheeler K E, Murphy C J. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles[J]. Anal. Chem., 2022,94(11):4737-4746. doi: 10.1021/acs.analchem.1c05243

    79. [79]

      Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert U S. Asymmetric flow field-flow fractionation in the field of nanomedicine[J]. Anal. Chem., 2014,86(11):5201-5210. doi: 10.1021/ac501664t

    80. [80]

      Alberg I, Kramer S, Schinnerer M, Hu Q, Seidl C, Leps C, Drude N, Möckel D, Rijcken C, Lammers T, Diken M, Maskos M, Morsbach S, Landfester K, Tenzer S, Barz M, Zentel R. Polymeric nanoparticles with neglectable protein corona[J]. Small, 2020,16(18)1907574. doi: 10.1002/smll.201907574

    81. [81]

      Yang H Y, Wang M, Zhang Y M, Liu X Y, Yu S N, Guo Y M, Yang S N, Yang L. Detailed insight into the formation of protein corona: Conformational change, stability and aggregation[J]. Int. J. Biol. Macromol., 2019,135:1114-1122. doi: 10.1016/j.ijbiomac.2019.06.014

    82. [82]

      Halder K, Sengupta P, Chaki S, Saha R, Dasgupta S. Understanding conformational changes in human serum albumin and its interactions with gold nanorods: Do flexible regions play a role in corona formation?[J]. Langmuir, 2023,39(4):1651-1664. doi: 10.1021/acs.langmuir.2c03145

    83. [83]

      Yu Y N, Luan Y N, Dai W. Time evolution of protein corona formed by polystyrene nanoplastics and urease[J]. Int. J. Biol. Macromol., 2022,218:72-81. doi: 10.1016/j.ijbiomac.2022.07.104

    84. [84]

      Pyrgiotakis G, Blattmann C O, Demokritou P. Real-time nanoparticle-cell interactions in physiological media by atomic force microscopy[J]. ACS Sustain. Chem. Eng., 2014,2(7):1681-1690. doi: 10.1021/sc500152g

    85. [85]

      Kelly P M, Åberg C, Polo E, O'connell A, Cookman J, Fallon J, Krpetić Ž, Dawson K A. Mapping protein binding sites on the biomolecular corona of nanoparticles[J]. Nat. Nanotechnol., 2015,10(5):472-479. doi: 10.1038/nnano.2015.47

    86. [86]

      Zhang T, Dong C Q, Ren J C. Probing the protein corona of nanoparticles in a fluid flow by single-particle differenced resonance light scattering correlation spectroscopy[J]. Anal. Chem., 2023,95(3):2029-2038. doi: 10.1021/acs.analchem.2c04568

    87. [87]

      Vitali M, Casals E, Canals F, Colomé N, Puntes V. Simple spectroscopic determination of the hard protein corona composition in AuNPs: Albumin at 75%[J]. Nanoscale, 2020,12(29):15832-15844. doi: 10.1039/D0NR02379E

    88. [88]

      Dolci M, Wang Y Y, Nooteboom S W, Rodriguez P E D S, Sánchez S, Albertazzi L, Zijlstra P. Real-time optical tracking of protein corona formation on single nanoparticles in serum[J]. ACS Nano, 2023,17(20):20167-20178. doi: 10.1021/acsnano.3c05872

    89. [89]

      Srivastava I, Khan M S, Dighe K, Alafeef M, Wang Z, Banerjee T, Ghonge T, Grove L M, Bashir R, Pan D. On-chip electrical monitoring of real-time "soft" and "hard" protein corona formation on carbon nanoparticles[J]. Small Methods, 2020,4(7)2000099. doi: 10.1002/smtd.202000099

    90. [90]

      Mourdikoudis S, Pallares R M, Thanh N T K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties[J]. Nanoscale, 2018,10(27):12871-12934. doi: 10.1039/C8NR02278J

    91. [91]

      Sanchez-Cano C, Alvarez-Puebla R A, Abendroth J M, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman H N, Chen C Y, Cohen B E, Conceição A L C, Cormode D P, Cui D X, Dawson K A, Falkenberg G, Fan C H, Feliu N, Gao M Y, Gargioni E, Glüer C C, Grüner F, Hassan M, Hu Y, Huang Y L, Huber S, Huse N, Kang Y, Khademhosseini A, Keller T F, Körnig C, Kotov N A, Koziej D, Liang X J, Liu B B, Liu S J, Liu Y, Liu Z Y, Liz-Marzán L M, Ma X W, Machicote A, Maison W, Mancuso A P, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson J J, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal M K, Schaak R E, Schlemmer H P, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood A K, Spiers K M, Staufer T, Stemer D M, Stierle A, Sun X, Tsakanova G, Weiss P S, Weller H, Westermeier F, Xu M, Yan H J, Zeng Y, Zhao Y, Zhao Y L, Zhu D C, Zhu Y, Parak W J. X-ray-based techniques to study the nano-bio interface[J]. ACS Nano, 2021,15(3):3754-3807. doi: 10.1021/acsnano.0c09563

    92. [92]

      Pareek V, Bhargava A, Bhanot V, Gupta R, Jain N, Panwar J. Formation and characterization of protein corona around nanoparticles: A review[J]. J. Nanosci. Nanotechnol., 2018,18(10):6653-6670. doi: 10.1166/jnn.2018.15766

    93. [93]

      Zou Y J, Ito S, Yoshino F, Suzuki Y, Zhao L, Komatsu N. Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake[J]. ACS Nano, 2020,14(6):7216-7226. doi: 10.1021/acsnano.0c02289

    94. [94]

      Zhang Y W, Wu J L Y, Lazarovits J, Chan W C W. An analysis of the binding function and structural organization of the protein corona[J]. J. Am. Chem. Soc., 2020,142(19):8827-8836. doi: 10.1021/jacs.0c01853

    95. [95]

      Fuentes-Cervantes A, Allica J R, Celis F C, Costa-Fernández J M, Encinar J R. The potential of ICP-MS as a complementary tool in nanoparticle-protein corona analysis[J]. Nanomaterials, 2023,13(6)1132. doi: 10.3390/nano13061132

    96. [96]

      Wang S W, Duan Z Y, Zheng L L, Yang Y, Zheng X Y, Xiao D, Ai B L, Wang M F, Sheng Z W. Digestive enzyme corona formed in simulated gastrointestinal tract and its impact on EGCG release from banana resistant starch nanoparticles[J]. Food Hydrocolloids, 2024,146109267. doi: 10.1016/j.foodhyd.2023.109267

    97. [97]

      Ashkarran A A, Gharibi H, Voke E, Landry M P, Saei A A, Mahmoudi M. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities[J]. Nat. Commun., 2022,13(1)6610. doi: 10.1038/s41467-022-34438-8

    98. [98]

      Gharibi H, Ashkarran A A, Jafari M, Voke E, Landry M P, Saei A A, Mahmoudi M. A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities[J]. Nat. Commun., 2024,15(1)342. doi: 10.1038/s41467-023-44678-x

    99. [99]

      Filep C, Guttman A. Electromigration dispersion in sodium dodecyl sulfate capillary gel electrophoresis of proteins[J]. Anal. Chem., 2022,94(38):13092-13099. doi: 10.1021/acs.analchem.2c02348

    100. [100]

      Vidaurre-Agut C, Rivero-Buceta E, Romaní-Cubells E, Clemments A M, Vera-Donoso C D, Landry C C, Botella P. Protein corona over mesoporous silica nanoparticles: Influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics[J]. ACS Omega, 2019,4(5):8852-8861. doi: 10.1021/acsomega.9b00460

    101. [101]

      Bastos M, Abian O, Johnson C M, Ferreira-Da-Silva F, Vega S, Jimenez-Alesanco A, Ortega-Alarcon D, Velazquez-Campoy A. Isothermal titration calorimetry[J]. Nat. Rev. Method Primer., 2023,3(1)17. doi: 10.1038/s43586-023-00199-x

    102. [102]

      Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle‑ protein interactions[J]. Nanoscale, 2019,11(41):19265-19273. doi: 10.1039/C9NR05790K

    103. [103]

      Nayak P S, Borah S M, Gogoi H, Asthana S, Bhatnagar R, Jha A N, Jha S. Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity[J]. Chem. Eng. J., 2019,361:470-484. doi: 10.1016/j.cej.2018.12.084

    104. [104]

      Sebastiani F, Arteta M Y, Lindfors L, Cárdenas M. Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment[J]. J. Colloid Interface Sci., 2022,610:766-774. doi: 10.1016/j.jcis.2021.11.117

    105. [105]

      Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J. Surface charge effects in protein adsorption on nanodiamonds[J]. Nanoscale, 2015,7(13):5726-5736. doi: 10.1039/C5NR00250H

    106. [106]

      Peter Q A E, Jacquat R P B, Herling T W, Challa P K, Kartanas T, Knowles T P J. Microscale diffusiophoresis of proteins[J]. J. Phys. Chem. B, 2022,126(44):8913-8920. doi: 10.1021/acs.jpcb.2c04029

    107. [107]

      Cao Z T, Gan L Q, Jiang W, Wang J L, Zhang H B, Zhang Y, Wang Y C, Yang X Z, Xiong M H, Wang J. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics[J]. ACS Nano, 2020,14(3):3563-3575. doi: 10.1021/acsnano.9b10015

    108. [108]

      Jug A, Bratkovič T, Ilaš J. Biolayer interferometry and its applications in drug discovery and development[J]. Trac-Trends Anal. Chem., 2024,176117741. doi: 10.1016/j.trac.2024.117741

    109. [109]

      Dzimianski J V, Lorig-Roach N, O'rourke S M, Alexander D L, Kimmey J M, Dubois R M. Rapid and sensitive detection of SARS-CoV-2 antibodies by biolayer interferometry[J]. Sci. Rep., 2020,10(1)21738. doi: 10.1038/s41598-020-78895-x

    110. [110]

      Galdino F E, Picco A S, Capeletti L B, Bettini J, Cardoso M B. Inside the protein corona: From binding parameters to unstained hard and soft coronas visualization[J]. Nano Lett., 2021,21(19):8250-8257. doi: 10.1021/acs.nanolett.1c02416

    111. [111]

      Wang L M, Li J Y, Pan J, Jiang X M, Ji Y L, Li Y F, Qu Y, Zhao Y L, Wu X C, Chen C Y. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes[J]. J. Am. Chem. Soc., 2013,135(46):17359-17368. doi: 10.1021/ja406924v

    112. [112]

      Lin X J, Pan Q, He Y. In situ detection of protein corona on single particle by rotational diffusivity[J]. Nanoscale, 2019,11(39):18367-18374. doi: 10.1039/C9NR06072C

    113. [113]

      Tan X C, Welsher K. Particle-by-particle in situ characterization of the protein corona via real-time 3D single-particle-tracking spectroscopy**[J]. Angew. Chem. Int. Ed., 2021,60(41):22359-22367. doi: 10.1002/anie.202105741

    114. [114]

      Clemments A M, Botella P, Landry C C. Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy[J]. J. Am. Chem. Soc., 2017,139(11):3978-3981. doi: 10.1021/jacs.7b01118

    115. [115]

      Wang Y Y, Rodriguez P E D S, Woythe L, Sánchez S, Samitier J, Zijlstra P, Albertazzi L. Multicolor super-resolution microscopy of protein corona on single nanoparticles[J]. ACS Appl. Mater. Interfaces, 2022,14(33):37345-37355. doi: 10.1021/acsami.2c06975

    116. [116]

      Chapman H N, Fromme P, Barty A, White T A, Kirian R A, Aquila A, Hunter M S, Schulz J, Deponte D P, Weierstall U, Doak R B, Maia F R N C, Martin A V, Schlichting I, Lomb L, Coppola N, Shoeman R L, Epp S W, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M N, Barthelmess M, Caleman C, Boutet S, Bogan M J, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Hömke A, Reich C, Pietschner D, Strüder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kühnel K U, Messerschmidt M, Bozek J D, Hau-Riege S P, Frank M, Hampton C Y, Sierra R G, Starodub D, Williams G J, Hajdu J, Timneanu N, Seibert M M, Andreasson J, Rocker A, Jönsson O, Svenda M, Stern S, Nass K, Andritschke R, Schröter C D, Krasniqi F, Bott M, Schmidt K E, Wang X Y, Grotjohann I, Holton J M, Barends T R M, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence J C H. Femtosecond X-ray protein nanocrystallography[J]. Nature, 2011,470(7332):73-77. doi: 10.1038/nature09750

    117. [117]

      Nogales E. The development of cryo-EM into a mainstream structural biology technique[J]. Nat. Methods, 2016,13(1):24-27. doi: 10.1038/nmeth.3694

    118. [118]

      Alderson T R, Kay L E. Unveiling invisible protein states with NMR spectroscopy[J]. Curr. Opin. Struct. Biol., 2020,60:39-49. doi: 10.1016/j.sbi.2019.10.008

    119. [119]

      Brosey C A, Tainer J A. Evolving SAXS versatility: Solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology[J]. Curr. Opin. Struct. Biol., 2019,58:197-213. doi: 10.1016/j.sbi.2019.04.004

    120. [120]

      Cao C, Zhang L, Kent B, Wong S, Garvey C J, Stenzel M H. The protein corona leads to deformation of spherical micelles[J]. Angew. Chem. Int. Ed., 2021,60(18):10342-10349. doi: 10.1002/anie.202101129

    121. [121]

      Yoneda J S, Cardoso M B. Nanoparticle-induced conformational changes in protein corona revealed by circular dichroism spectroscopy[J]. Nanomedicine, 2023,18(9):709-711. doi: 10.2217/nnm-2023-0115

    122. [122]

      Bortolini C, Kartanas T, Copic D, Condado Morales I, Zhang Y W, Challa P K, Peter Q, Jávorfi T, Hussain R, Dong M D, Siligardi G, Knowles T P J, Charmet J. Resolving protein mixtures using microfluidic diffusional sizing combined with synchrotron radiation circular dichroism[J]. Lab Chip, 2019,19(1):50-58. doi: 10.1039/C8LC00757H

    123. [123]

      Wallace B A. Using circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectroscopy to study membrane proteins[J]. Biophys. J., 2010,98(3, Suppl 1):209a-210a.

    124. [124]

      Dai X, Fu W H, Chi H Y, Mesias V S D, Zhu H N, Leung C W, Liu W, Huang J Q. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures[J]. Nat. Commun., 2021,12(1)1292. doi: 10.1038/s41467-021-21543-3

    125. [125]

      Lorenz-Fonfria V A. Infrared difference spectroscopy of proteins: From bands to bonds[J]. Chem. Rev., 2020,120(7):3466-3576. doi: 10.1021/acs.chemrev.9b00449

    126. [126]

      Basu A, Kundu S, Basu C, Ghosh S K, Sur R, Mukherjee A. Biopolymer nanoparticle surface chemistry dictates the nature and extent of protein hard corona[J]. J. Mol. Liq., 2019,282:169-176. doi: 10.1016/j.molliq.2019.03.016

    127. [127]

      Kozuch J, Ataka K, Heberle J. Surface-enhanced infrared absorption spectroscopy[J]. Nat. Rev. Method Primer, 2023,3(1)70. doi: 10.1038/s43586-023-00253-8

    128. [128]

      Szekeres G P, Montes-Bayón M, Bettmer J, Kneipp J. Fragmentation of proteins in the corona of gold nanoparticles as observed in live cell surface-enhanced Raman scattering[J]. Anal. Chem., 2020,92(12):8553-8560. doi: 10.1021/acs.analchem.0c01404

    129. [129]

      Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chem. Rev., 2018,118(10):4946-4980. doi: 10.1021/acs.chemrev.7b00668

    130. [130]

      Fu W H, Chi H Y, Dai X, Zhu H N, Mesias V S D, Liu W, Huang J Q. Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus[J]. Nat. Commun., 2023,14(1)6996. doi: 10.1038/s41467-023-42812-3

    131. [131]

      Huang B T, Miao L F, Li J, Xie Z P, Wang Y, Chai J, Zhai Y M. Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing[J]. Nat. Commun., 2022,13(1)1402. doi: 10.1038/s41467-022-29123-9

    132. [132]

      Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov A P, Edel J B. Solid-state nanopore sensors[J]. Nat. Mater., 2020,5(12):931-951. doi: 10.1038/s41578-020-0229-6

    133. [133]

      Yusko E C, Bruhn B R, Eggenberger O M, Houghtaling J, Rollings R C, Walsh N C, Nandivada S, Pindrus M, Hall A R, Sept D, Li J, Kalonia D S, Mayer M. Real-time shape approximation and fingerprinting of single proteins using a nanopore[J]. Nat. Nanotechnol., 2017,12(4):360-367. doi: 10.1038/nnano.2016.267

    134. [134]

      Niedzwiecki D J, Grazul J, Movileanu L. Single-molecule observation of protein adsorption onto an inorganic surface[J]. J. Am. Chem. Soc., 2010,132(31):10816-10822. doi: 10.1021/ja1026858

    135. [135]

      Li J, Huang B T, Wang Y H, Li A J, Wang Y, Pan Y Y, Chai J, Liu Z, Zhai Y M. Light-driven conversion of silicon nitride nanopore to nanonet for single-protein trapping analysis[J]. Adv. Mater., 2023,35(16)2210342. doi: 10.1002/adma.202210342

    136. [136]

      Schmid S, Stömmer P, Dietz H, Dekker C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations[J]. Nat. Nanotechnol., 2021,16(11):1244-1250. doi: 10.1038/s41565-021-00958-5

  • 加载中
    1. [1]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    11. [11]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    12. [12]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(2)
  • Abstract views(62)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return