Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles
- Corresponding author: Bintong HUANG, bthuang@whu.edu.cn Yueming ZHAI, yueming@whu.edu.cn
Citation: Yongjie ZHANG, Bintong HUANG, Yueming ZHAI. Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Hajipour M J, Safavi-Sohi R, Sharifi S, Mahmoud N, Ashkarran A A, Voke E, Serpooshan V, Ramezankhani M, Milani A S, Landry M P, Mahmoudi M. An overview of nanoparticle protein corona literature[J]. Small, 2023,19(36)2301838. doi: 10.1002/smll.202301838
Mahmoudi M, Landry M P, Moore A, Coreas R. The protein corona from nanomedicine to environmental science[J]. Nat. Rev. Mater., 2023,8(7):422-438. doi: 10.1038/s41578-023-00552-2
Yang M, Wu E, Tang W J, Qian J, Zhan C Y. Interplay between nanomedicine and protein corona[J]. J. Mater. Chem. B, 2021,9(34):6713-6727. doi: 10.1039/D1TB01063H
Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat. Mater., 2009,8(7):543-557. doi: 10.1038/nmat2442
Ke P C, Lin S, Parak W J, Davis T P, Caruso F. A decade of the protein corona[J]. ACS Nano, 2017,11(12):11773-11776. doi: 10.1021/acsnano.7b08008
Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer S K, Stauber R H. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology[J]. Nat. Nanotechnol., 2013,8(10):772-781. doi: 10.1038/nnano.2013.181
Hadjidemetriou M, Kostarelos K. Evolution of the nanoparticle corona[J]. Nat. Nanotechnol., 2017,12(4):288-290. doi: 10.1038/nnano.2017.61
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson K A, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proc. Natl. Acad. Sci. U. S. A., 2007,104(7):2050-2055. doi: 10.1073/pnas.0608582104
Bangham A D, Pethica B A, Seaman G V F. The charged groups at the interface of some blood cells[J]. Biochem. J., 1958,69(1):12-19. doi: 10.1042/bj0690012
Vroman L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids[J]. Nature, 1962,196(4853):476-477. doi: 10.1038/196476a0
Weber C, Voigt M, Simon J, Danner A K, Frey H, Mailänder V, Helm M, Morsbach S, Landfester K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona[J]. Biomacromolecules, 2019,20(8):2989-2999. doi: 10.1021/acs.biomac.9b00539
Tang H, Zhang Y, Yang T, Wang C, Zhu Y H, Qiu L J, Liu J H, Song Y, Zhou L, Zhang J Z, Wong Y K, Liu Y F, Xu C C, Wang H F, Wang J G. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona[J]. Nat. Nanotechnol., 2023,18(9):1067-1077. doi: 10.1038/s41565-023-01455-7
Wheeler K E, Chetwynd A J, Fahy K M, Hong B S, Tochihuitl J A, Foster L A, Lynch I. Environmental dimensions of the protein corona[J]. Nat. Nanotechnol., 2021,16(6):617-629. doi: 10.1038/s41565-021-00924-1
Baimanov D, Wang J, Zhang J, Liu K, Cong Y L, Shi X M, Zhang X H, Li Y F, Li X M, Qiao R R, Zhao Y L, Zhou Y L, Wang L M, Chen C Y. In situ analysis of nanoparticle soft corona and dynamic evolution[J]. Nat. Commun., 2022,13(1)5389. doi: 10.1038/s41467-022-33044-y
Casals E, Pfaller T, Duschl A, Oostingh G J, Puntes V. Time evolution of the nanoparticle protein corona[J]. ACS Nano, 2010,4(7):3623-3632. doi: 10.1021/nn901372t
Trinh D N, Gardner R A, Franciosi A N, Mccarthy C, Keane M P, Soliman M G, O'donnell J S, Meleady P, Spencer D I R, Monopoli M P. Nanoparticle biomolecular corona-based enrichment of plasma glycoproteins for N-glycan profiling and application in biomarker discovery[J]. ACS Nano, 2022,16(4):5463-5475. doi: 10.1021/acsnano.1c09564
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation[J]. Nanoscale, 2020,12(18):10240-10253. doi: 10.1039/D0NR02788J
Chantada-Vázquez M D P, Castro López A, García‑Vence M, Acea-Nebril B, Bravo S B, Núñez C. Protein corona gold nanoparticles fingerprinting reveals a profile of blood coagulation proteins in the serum of HER2-overexpressing breast cancer patients[J]. Int. J. Mol. Sci., 2020,21(22):8449-8467. doi: 10.3390/ijms21228449
Blume J E, Manning W C, Troiano G, Hornburg D, Figa M, Hesterberg L, Platt T L, Zhao X, Cuaresma R A, Everley P A, Ko M, Liou H, Mahoney M, Ferdosi S, Elgierari E M, Stolarczyk C, Tangeysh B, Xia H, Benz R, Siddiqui A, Carr S A, Ma P, Langer R, Farias V, Farokhzad O C. Rapid, deep and precise profiling of the plasma proteome with multi‑nanoparticle protein corona[J]. Nat. Commun., 2020,11(1)3662. doi: 10.1038/s41467-020-17033-7
Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake[J]. Biomacromolecules, 2015,16(4):1311-1321. doi: 10.1021/acs.biomac.5b00108
Ge C C, Du J F, Zhao L N, Wang L M, Liu Y, Li D H, Yang Y L, Zhou R H, Zhao Y L, Chai Z F, Chen C Y. Binding of blood proteins to carbon nanotubes reduces cytotoxicity[J]. Proc. Natl. Acad. Sci. U. S. A., 2011,108(41):16968-16973. doi: 10.1073/pnas.1105270108
López-Estévez A M, Lapuhs P, Pineiro-Alonso L, Alonso M J. Personalized cancer nanomedicine: Overcoming biological barriers for intracellular delivery of biopharmaceuticals[J]. Adv. Mater., 2024,36(14)2309355. doi: 10.1002/adma.202309355
Visalakshan R M, García L E G, Benzigar M R, Ghazaryan A, Simon J, Mierczynska‑Vasilev A, Michl T D, Vinu A, Mailänder V, Morsbach S, Landfester K, Vasilev K. The influence of nanoparticle shape on protein corona formation[J]. Small, 2020,16(25)2000285. doi: 10.1002/smll.202000285
Weiss A C G, Kelly H G, Faria M, Besford Q A, Wheatley A K, Ang C S, Crampin E J, Caruso F, Kent S J. Link between low-fouling and stealth: A whole blood biomolecular corona and cellular association analysis on nanoengineered particles[J]. ACS Nano, 2019,13(5):4980-4991. doi: 10.1021/acsnano.9b00552
Pinals R L, Yang D, Rosenberg D J, Chaudhary T, Crothers A R, Iavarone A T, Hammel M, Landry M P. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments[J]. Angew. Chem. Int. Ed., 2020,59(52):23668-23677. doi: 10.1002/anie.202008175
Ashby J, Pan S Q, Zhong W W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona[J]. ACS Appl. Mater. Interfaces, 2014,6(17):15412-15419. doi: 10.1021/am503909q
Piella J, Bastús N G, Puntes V. Size-dependent protein-nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona[J]. Bioconjugate Chem., 2017,28(1):88-97. doi: 10.1021/acs.bioconjchem.6b00575
Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer S K, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber R H. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis[J]. ACS Nano, 2011,5(9):7155-7167. doi: 10.1021/nn201950e
Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation[J]. WIREs Nanomed. Nanobiotechnol., 2022,14e1788. doi: 10.1002/wnan.1788
Diloknawarit B, Lee K, Choo P, Odom T W. Nanoparticle anisotropy increases targeting interactions on live-cell membranes[J]. ACS Nano, 2024,18(19):12537-12546. doi: 10.1021/acsnano.4c02700
Bewersdorff T, Glitscher E A, Bergueiro J, Eravci M, Miceli E, Haase A, Calderón M. The influence of shape and charge on protein corona composition in common gold nanostructures[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020,117111270. doi: 10.1016/j.msec.2020.111270
Wang G K, Wang W L, Shangguan E, Gao S Y, Liu Y F. Effects of gold nanoparticle morphologies on interactions with proteins[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020,111110830. doi: 10.1016/j.msec.2020.110830
Tukova A, Nie Y H, Yaraki M T, Tran N T, Wang J Q, Rodger A, Gu Y T, Wang Y L. Shape dependent protein-induced stabilization of gold nanoparticles: From a protein corona perspective[J]. Aggregate, 2023,4(4)e323. doi: 10.1002/agt2.323
Choo P, Liu T T, Odom T W. Nanoparticle shape determines dynamics of targeting nanoconstructs on cell membranes[J]. J. Am. Chem. Soc., 2021,143(12):4550-4555. doi: 10.1021/jacs.1c00850
García-Álvarez R, Hadjidemetriou M, Sánchez-Iglesias A, Liz-Marzán L M, Kostarelos K. In vivo formation of protein corona on gold nanoparticles[J]. The effect of their size and shape. Nanoscale, 2018,10(3):1256-1264.
Liu Z Y, Zhan X H, Yang M G, Yang Q, Xu X H, Lan F, Wu Y, Gu Z W. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors[J]. Nanoscale, 2016,8(14):7544-7555. doi: 10.1039/C5NR08447D
Du T T, Shi G L, Liu F F, Zhang T, Chen W. Sulfidation of Ag and ZnO nanomaterials significantly affects protein corona composition: Implications for human exposure to environmentally aged nanomaterials[J]. Environ. Sci. Technol., 2019,53(24):14296-14307. doi: 10.1021/acs.est.9b04332
Liu W, Worms I A M, Herlin-Boime N, Truffier-Boutry D, Michaud-Soret I, Mintz E, Vidaud C, Rollin-Genetet F. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: Impact on metal substitution by Ag, corona formation and enzymatic activity[J]. Nanoscale, 2017,9(19):6581-6594. doi: 10.1039/C7NR01075C
Walkey C D, Olsen J B, Guo H B, Emili A, Chan W C W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. J. Am. Chem. Soc., 2012,134(4):2139-2147. doi: 10.1021/ja2084338
Andrzejewska W, Peplińska B, Litowczenko J, Obstarczyk P, Olesiak-Bańska J, Jurga S, Lewandowski M. SARS-CoV-2 virus-like particles with plasmonic Au cores and S1-spike protein coronas[J]. ACS Synth. Biol., 2023,12(8):2320-2328. doi: 10.1021/acssynbio.3c00133
Di Silvio D, Silvestri A, Lay L, Polito L, Moya S E. Impact of aoncanavalinA affinity in the intracellular fate of protein corona on glucosamine Au nanoparticles[J]. Sci. Rep., 2018,8(1)9046. doi: 10.1038/s41598-018-27418-w
Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential[J]. Biomaterials, 2007,28(31):4600-4607. doi: 10.1016/j.biomaterials.2007.07.029
Wu L J, Fu F Q, Wang W H, Wang W H, Huang Z W, Huang Y, Pan X, Wu C B. Plasma protein corona forming upon fullerene nanocomplex: impact on both counterparts[J]. Particuology, 2023,73:26-36. doi: 10.1016/j.partic.2022.04.006
Baimanov D, Wang L M, Liu K, Pan M M, Cai R, Yuan H, Huang W X, Yuan Q X, Zhou Y L, Chen C Y, Zhao Y L. Stereoselective coronas regulate the fate of chiral gold nanoparticles in vivo[J]. Nanoscale Horiz., 2023,8(7):859-869. doi: 10.1039/D3NH00124E
Oberländer J, Champanhac C, Da Costa Marques R, Landfester K, Mailänder V. Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles[J]. Acta Biomater., 2022,148:271-278. doi: 10.1016/j.actbio.2022.06.028
Sheibani S, Basu K, Farnudi A, Ashkarran A, Ichikawa M, Presley J F, Bui K H, Ejtehadi M R, Vali H, Mahmoudi M. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation[J]. Nat. Commun., 2021,12(1)573. doi: 10.1038/s41467-020-20884-9
Zhang Q F, Hernandez T, Smith K W, Jebeli S A H, Dai A X, Warning L, Baiyasi R, Mccarthy L A, Guo H, Chen D H, Dionne J A, Landes C F, Link S. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes[J]. Science, 2019,365(6460):1475-1478. doi: 10.1126/science.aax5415
Qu S H, Qiao Z H, Zhong W C, Liang K Q, Jiang X, Shang L. Chirality-dependent dynamic evolution of the protein corona on the surface of quantum dots[J]. ACS Appl. Mater. Interfaces, 2022,14(39):44147-44157. doi: 10.1021/acsami.2c11874
De Sousa M, Martins C H Z, Franqui L S, Fonseca L C, Delite F S, Lanzoni E M, Martinez D S T, Alves O L. Covalent functionalization of graphene oxide with D-mannose: Evaluating the hemolytic effect and protein corona formation[J]. J. Mater. Chem. B, 2018,6(18):2803-2812. doi: 10.1039/C7TB02997G
Mo J B, Xie Q Y, Wei W, Zhao J. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona[J]. Nat. Commun., 2018,9(1)2480. doi: 10.1038/s41467-018-04873-7
Lei L, Zhang S Y, Zhang X J, Qin B, Deng S, Zhao Q, Xing B S. Concentration-dependent layer exfoliation of black phosphorus by human serum albumin and its corresponding biocompatibility change[J]. Environ. Sci. Technol., 2023,57(48):20118-20126. doi: 10.1021/acs.est.3c03739
Xu L G, Wang X X, Wang W W, Sun M Z, Choi W J, Kim J Y, Hao C L, Li S, Qu A H, Lu M, Wu X R, Colombari F M, Gomes W R, Blanco A L, De Moura A F, Guo X, Kuang H, Kotov N A, Xu C L. Enantiomer-dependent immunological response to chiral nanoparticles[J]. Nature, 2022,601(7893):366-373. doi: 10.1038/s41586-021-04243-2
Pustulka S M, Ling K, Pish S L, Champion J A. Protein nanoparticle charge and hydrophobicity govern protein corona and macrophage uptake[J]. ACS Appl. Mater. Interfaces, 2020,12(43):48284-48295. doi: 10.1021/acsami.0c12341
Liang L, Everest-Dass A V, Kostyuk A B, Khabir Z, Zhang R, Trushina D B, Zvyagin A V. The surface charge of polymer-coated upconversion nanoparticles determines protein corona properties and cell recognition in serum solutions[J]. Cells, 2022,11(22)3644. doi: 10.3390/cells11223644
Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots[J]. Nanoscale, 2022,14(39):14695-14710. doi: 10.1039/D2NR03611H
Wang G K, Yan C L, Gao S Y, Liu Y F. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2019,103109856. doi: 10.1016/j.msec.2019.109856
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy[J]. Adv. Drug Delivery Rev., 2011,63(1):24-46.
Yang H Y, Hao C C, Nan Z Z, Sun R G. Bovine hemoglobin adsorption onto modified silica nanoparticles: Multi-spectroscopic measurements based on kinetics and protein conformation[J]. Int. J. Biol. Macromol., 2020,155:208-215. doi: 10.1016/j.ijbiomac.2020.03.211
Hajipour M J, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: A "key" factor at the nanobiointerface[J]. Biomater. Sci., 2014,2(9):1210-1221. doi: 10.1039/C4BM00131A
Sodipo B K, Aziz A A. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica[J]. J. Magn. Magn. Mater., 2016,416:275-291. doi: 10.1016/j.jmmm.2016.05.019
Giulimondi F, Vulpis E, Digiacomo L, Giuli M V, Mancusi A, Capriotti A L, Laganà A, Cerrato A, Zenezini Chiozzi R, Nicoletti C, Amenitsch H, Cardarelli F, Masuelli L, Bei R, Screpanti I, Pozzi D, Zingoni A, Checquolo S, Caracciolo G. Opsonin‑deficient nucleoproteic corona endows unPEGylated liposomes with stealth properties in vivo[J]. ACS Nano, 2022,16(2):2088-2100. doi: 10.1021/acsnano.1c07687
Dridi N, Jin Z C, Perng W, Mattoussi H. Probing protein corona formation around gold nanoparticles: Effects of surface coating[J]. ACS Nano, 2024,18(12):8649-8662. doi: 10.1021/acsnano.3c08005
Piloni A, Wong C K, Chen F, Lord M, Walther A, Stenzel M H. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake[J]. Nanoscale, 2019,11(48):23259-23267. doi: 10.1039/C9NR06835J
Li M Y, Jin X Y, Liu T, Fan F, Gao F, Chai S, Yang L H. Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A‑Ⅰ in corona formation[J]. Nat. Commun., 2022,13(1)4137. doi: 10.1038/s41467-022-31882-4
Levi M. Hemostasis and thrombosis in extreme temperatures (hypo- and hyperthermia)[J]. Semin. Thromb. Hemost., 2018,44(7):651-655. doi: 10.1055/s-0038-1648231
Wu J W, Xing L Y, Zheng Y X, Yu Y L, Wu R N, Liu X, Li L, Huang Y. Disease-specific protein corona formed in pathological intestine enhances the oral absorption of nanoparticles[J]. Acta Pharm. Sin. B, 2023,13(9):3876-3891. doi: 10.1016/j.apsb.2023.02.012
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal A K, Bera K, Maiti N C. Naringenin-functionalized gold nanoparticles and their role in α-synuclein stabilization[J]. Langmuir, 2023,39(21):7231-7248. doi: 10.1021/acs.langmuir.2c03259
Davis A A, Leyns C E G, Holtzman D M. Intercellular spread of protein aggregates in neurodegenerative disease[J]. Annu. Rev. Cell Dev. Biol., 2018,34:545-568. doi: 10.1146/annurev-cellbio-100617-062636
Siani P, Di Valentin C. Effect of dopamine-functionalization, charge and pH on protein corona formation around TiO2 nanoparticles[J]. Nanoscale, 2022,14(13):5121-5137. doi: 10.1039/D1NR07647G
Lee H. Separation of protein corona from nanoparticles under intracellular acidic conditions: Effect of protonation on nanoparticle-protein and protein-protein interactions[J]. Phys. Chem. Chem. Phys., 2024,26(5):4000-4010. doi: 10.1039/D3CP04887J
Shan H H, Zhao Q R, Guo Y, Gao M C, Xu X, Mcclements D J, Cao C G, Yuan B. Impact of pH on the formation and properties of whey protein coronas around TiO2 nanoparticles[J]. J. Agric. Food. Chem., 2023,71(14):5756-5769. doi: 10.1021/acs.jafc.3c00073
Wang W H, Huang Z W, Li Y B, Wang W H, Shi J Y, Fu F Q, Huang Y, Pan X, Wu C B. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study[J]. Acta Pharm. Sin. B, 2021,11(4):1030-1046. doi: 10.1016/j.apsb.2020.10.023
Weber C, Morsbach S, Landfester K. Possibilities and limitations of different separation techniques for the analysis of the protein corona[J]. Angew. Chem. Int. Ed., 2019,58(37):12787-12794. doi: 10.1002/anie.201902323
Podila R, Vedantam P, Ke P C, Brown J M, Rao A M. Evidence for charge-transfer-induced conformational changes in carbon nanostructure-protein corona[J]. J. Phys. Chem. C, 2012,116(41):22098-22103. doi: 10.1021/jp3085028
Wang M, Gustafsson O J R, Siddiqui G, Javed I, Kelly H G, Blin T, Yin H, Kent S J, Creek D J, Kempe K, Ke P C, Davis T P. Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline)[J]. Nanoscale, 2018,10(23):10863-10875. doi: 10.1039/C8NR00835C
Cedervall T, Lynch I, Foy M, Berggård T, Donnelly S C, Cagney G, Linse S, Dawson K A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles[J]. Angew. Chem. Int. Ed., 2007,46(30):5754-5756. doi: 10.1002/anie.200700465
Chu Y X, Tang W J, Zhang Z, Li C, Qian J, Wei X L, Ying T L, Lu W Y, Zhan C Y. Deciphering protein corona by scFv-based affinity chromatography[J]. Nano Lett., 2021,21(5):2124-2131. doi: 10.1021/acs.nanolett.0c04806
Hoang K N L, Wheeler K E, Murphy C J. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles[J]. Anal. Chem., 2022,94(11):4737-4746. doi: 10.1021/acs.analchem.1c05243
Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert U S. Asymmetric flow field-flow fractionation in the field of nanomedicine[J]. Anal. Chem., 2014,86(11):5201-5210. doi: 10.1021/ac501664t
Alberg I, Kramer S, Schinnerer M, Hu Q, Seidl C, Leps C, Drude N, Möckel D, Rijcken C, Lammers T, Diken M, Maskos M, Morsbach S, Landfester K, Tenzer S, Barz M, Zentel R. Polymeric nanoparticles with neglectable protein corona[J]. Small, 2020,16(18)1907574. doi: 10.1002/smll.201907574
Yang H Y, Wang M, Zhang Y M, Liu X Y, Yu S N, Guo Y M, Yang S N, Yang L. Detailed insight into the formation of protein corona: Conformational change, stability and aggregation[J]. Int. J. Biol. Macromol., 2019,135:1114-1122. doi: 10.1016/j.ijbiomac.2019.06.014
Halder K, Sengupta P, Chaki S, Saha R, Dasgupta S. Understanding conformational changes in human serum albumin and its interactions with gold nanorods: Do flexible regions play a role in corona formation?[J]. Langmuir, 2023,39(4):1651-1664. doi: 10.1021/acs.langmuir.2c03145
Yu Y N, Luan Y N, Dai W. Time evolution of protein corona formed by polystyrene nanoplastics and urease[J]. Int. J. Biol. Macromol., 2022,218:72-81. doi: 10.1016/j.ijbiomac.2022.07.104
Pyrgiotakis G, Blattmann C O, Demokritou P. Real-time nanoparticle-cell interactions in physiological media by atomic force microscopy[J]. ACS Sustain. Chem. Eng., 2014,2(7):1681-1690. doi: 10.1021/sc500152g
Kelly P M, Åberg C, Polo E, O'connell A, Cookman J, Fallon J, Krpetić Ž, Dawson K A. Mapping protein binding sites on the biomolecular corona of nanoparticles[J]. Nat. Nanotechnol., 2015,10(5):472-479. doi: 10.1038/nnano.2015.47
Zhang T, Dong C Q, Ren J C. Probing the protein corona of nanoparticles in a fluid flow by single-particle differenced resonance light scattering correlation spectroscopy[J]. Anal. Chem., 2023,95(3):2029-2038. doi: 10.1021/acs.analchem.2c04568
Vitali M, Casals E, Canals F, Colomé N, Puntes V. Simple spectroscopic determination of the hard protein corona composition in AuNPs: Albumin at 75%[J]. Nanoscale, 2020,12(29):15832-15844. doi: 10.1039/D0NR02379E
Dolci M, Wang Y Y, Nooteboom S W, Rodriguez P E D S, Sánchez S, Albertazzi L, Zijlstra P. Real-time optical tracking of protein corona formation on single nanoparticles in serum[J]. ACS Nano, 2023,17(20):20167-20178. doi: 10.1021/acsnano.3c05872
Srivastava I, Khan M S, Dighe K, Alafeef M, Wang Z, Banerjee T, Ghonge T, Grove L M, Bashir R, Pan D. On-chip electrical monitoring of real-time "soft" and "hard" protein corona formation on carbon nanoparticles[J]. Small Methods, 2020,4(7)2000099. doi: 10.1002/smtd.202000099
Mourdikoudis S, Pallares R M, Thanh N T K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties[J]. Nanoscale, 2018,10(27):12871-12934. doi: 10.1039/C8NR02278J
Sanchez-Cano C, Alvarez-Puebla R A, Abendroth J M, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman H N, Chen C Y, Cohen B E, Conceição A L C, Cormode D P, Cui D X, Dawson K A, Falkenberg G, Fan C H, Feliu N, Gao M Y, Gargioni E, Glüer C C, Grüner F, Hassan M, Hu Y, Huang Y L, Huber S, Huse N, Kang Y, Khademhosseini A, Keller T F, Körnig C, Kotov N A, Koziej D, Liang X J, Liu B B, Liu S J, Liu Y, Liu Z Y, Liz-Marzán L M, Ma X W, Machicote A, Maison W, Mancuso A P, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson J J, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal M K, Schaak R E, Schlemmer H P, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood A K, Spiers K M, Staufer T, Stemer D M, Stierle A, Sun X, Tsakanova G, Weiss P S, Weller H, Westermeier F, Xu M, Yan H J, Zeng Y, Zhao Y, Zhao Y L, Zhu D C, Zhu Y, Parak W J. X-ray-based techniques to study the nano-bio interface[J]. ACS Nano, 2021,15(3):3754-3807. doi: 10.1021/acsnano.0c09563
Pareek V, Bhargava A, Bhanot V, Gupta R, Jain N, Panwar J. Formation and characterization of protein corona around nanoparticles: A review[J]. J. Nanosci. Nanotechnol., 2018,18(10):6653-6670. doi: 10.1166/jnn.2018.15766
Zou Y J, Ito S, Yoshino F, Suzuki Y, Zhao L, Komatsu N. Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake[J]. ACS Nano, 2020,14(6):7216-7226. doi: 10.1021/acsnano.0c02289
Zhang Y W, Wu J L Y, Lazarovits J, Chan W C W. An analysis of the binding function and structural organization of the protein corona[J]. J. Am. Chem. Soc., 2020,142(19):8827-8836. doi: 10.1021/jacs.0c01853
Fuentes-Cervantes A, Allica J R, Celis F C, Costa-Fernández J M, Encinar J R. The potential of ICP-MS as a complementary tool in nanoparticle-protein corona analysis[J]. Nanomaterials, 2023,13(6)1132. doi: 10.3390/nano13061132
Wang S W, Duan Z Y, Zheng L L, Yang Y, Zheng X Y, Xiao D, Ai B L, Wang M F, Sheng Z W. Digestive enzyme corona formed in simulated gastrointestinal tract and its impact on EGCG release from banana resistant starch nanoparticles[J]. Food Hydrocolloids, 2024,146109267. doi: 10.1016/j.foodhyd.2023.109267
Ashkarran A A, Gharibi H, Voke E, Landry M P, Saei A A, Mahmoudi M. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities[J]. Nat. Commun., 2022,13(1)6610. doi: 10.1038/s41467-022-34438-8
Gharibi H, Ashkarran A A, Jafari M, Voke E, Landry M P, Saei A A, Mahmoudi M. A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities[J]. Nat. Commun., 2024,15(1)342. doi: 10.1038/s41467-023-44678-x
Filep C, Guttman A. Electromigration dispersion in sodium dodecyl sulfate capillary gel electrophoresis of proteins[J]. Anal. Chem., 2022,94(38):13092-13099. doi: 10.1021/acs.analchem.2c02348
Vidaurre-Agut C, Rivero-Buceta E, Romaní-Cubells E, Clemments A M, Vera-Donoso C D, Landry C C, Botella P. Protein corona over mesoporous silica nanoparticles: Influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics[J]. ACS Omega, 2019,4(5):8852-8861. doi: 10.1021/acsomega.9b00460
Bastos M, Abian O, Johnson C M, Ferreira-Da-Silva F, Vega S, Jimenez-Alesanco A, Ortega-Alarcon D, Velazquez-Campoy A. Isothermal titration calorimetry[J]. Nat. Rev. Method Primer., 2023,3(1)17. doi: 10.1038/s43586-023-00199-x
Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle‑ protein interactions[J]. Nanoscale, 2019,11(41):19265-19273. doi: 10.1039/C9NR05790K
Nayak P S, Borah S M, Gogoi H, Asthana S, Bhatnagar R, Jha A N, Jha S. Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity[J]. Chem. Eng. J., 2019,361:470-484. doi: 10.1016/j.cej.2018.12.084
Sebastiani F, Arteta M Y, Lindfors L, Cárdenas M. Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment[J]. J. Colloid Interface Sci., 2022,610:766-774. doi: 10.1016/j.jcis.2021.11.117
Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J. Surface charge effects in protein adsorption on nanodiamonds[J]. Nanoscale, 2015,7(13):5726-5736. doi: 10.1039/C5NR00250H
Peter Q A E, Jacquat R P B, Herling T W, Challa P K, Kartanas T, Knowles T P J. Microscale diffusiophoresis of proteins[J]. J. Phys. Chem. B, 2022,126(44):8913-8920. doi: 10.1021/acs.jpcb.2c04029
Cao Z T, Gan L Q, Jiang W, Wang J L, Zhang H B, Zhang Y, Wang Y C, Yang X Z, Xiong M H, Wang J. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics[J]. ACS Nano, 2020,14(3):3563-3575. doi: 10.1021/acsnano.9b10015
Jug A, Bratkovič T, Ilaš J. Biolayer interferometry and its applications in drug discovery and development[J]. Trac-Trends Anal. Chem., 2024,176117741. doi: 10.1016/j.trac.2024.117741
Dzimianski J V, Lorig-Roach N, O'rourke S M, Alexander D L, Kimmey J M, Dubois R M. Rapid and sensitive detection of SARS-CoV-2 antibodies by biolayer interferometry[J]. Sci. Rep., 2020,10(1)21738. doi: 10.1038/s41598-020-78895-x
Galdino F E, Picco A S, Capeletti L B, Bettini J, Cardoso M B. Inside the protein corona: From binding parameters to unstained hard and soft coronas visualization[J]. Nano Lett., 2021,21(19):8250-8257. doi: 10.1021/acs.nanolett.1c02416
Wang L M, Li J Y, Pan J, Jiang X M, Ji Y L, Li Y F, Qu Y, Zhao Y L, Wu X C, Chen C Y. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes[J]. J. Am. Chem. Soc., 2013,135(46):17359-17368. doi: 10.1021/ja406924v
Lin X J, Pan Q, He Y. In situ detection of protein corona on single particle by rotational diffusivity[J]. Nanoscale, 2019,11(39):18367-18374. doi: 10.1039/C9NR06072C
Tan X C, Welsher K. Particle-by-particle in situ characterization of the protein corona via real-time 3D single-particle-tracking spectroscopy**[J]. Angew. Chem. Int. Ed., 2021,60(41):22359-22367. doi: 10.1002/anie.202105741
Clemments A M, Botella P, Landry C C. Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy[J]. J. Am. Chem. Soc., 2017,139(11):3978-3981. doi: 10.1021/jacs.7b01118
Wang Y Y, Rodriguez P E D S, Woythe L, Sánchez S, Samitier J, Zijlstra P, Albertazzi L. Multicolor super-resolution microscopy of protein corona on single nanoparticles[J]. ACS Appl. Mater. Interfaces, 2022,14(33):37345-37355. doi: 10.1021/acsami.2c06975
Chapman H N, Fromme P, Barty A, White T A, Kirian R A, Aquila A, Hunter M S, Schulz J, Deponte D P, Weierstall U, Doak R B, Maia F R N C, Martin A V, Schlichting I, Lomb L, Coppola N, Shoeman R L, Epp S W, Hartmann R, Rolles D, Rudenko A, Foucar L, Kimmel N, Weidenspointner G, Holl P, Liang M N, Barthelmess M, Caleman C, Boutet S, Bogan M J, Krzywinski J, Bostedt C, Bajt S, Gumprecht L, Rudek B, Erk B, Schmidt C, Hömke A, Reich C, Pietschner D, Strüder L, Hauser G, Gorke H, Ullrich J, Herrmann S, Schaller G, Schopper F, Soltau H, Kühnel K U, Messerschmidt M, Bozek J D, Hau-Riege S P, Frank M, Hampton C Y, Sierra R G, Starodub D, Williams G J, Hajdu J, Timneanu N, Seibert M M, Andreasson J, Rocker A, Jönsson O, Svenda M, Stern S, Nass K, Andritschke R, Schröter C D, Krasniqi F, Bott M, Schmidt K E, Wang X Y, Grotjohann I, Holton J M, Barends T R M, Neutze R, Marchesini S, Fromme R, Schorb S, Rupp D, Adolph M, Gorkhover T, Andersson I, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Spence J C H. Femtosecond X-ray protein nanocrystallography[J]. Nature, 2011,470(7332):73-77. doi: 10.1038/nature09750
Nogales E. The development of cryo-EM into a mainstream structural biology technique[J]. Nat. Methods, 2016,13(1):24-27. doi: 10.1038/nmeth.3694
Alderson T R, Kay L E. Unveiling invisible protein states with NMR spectroscopy[J]. Curr. Opin. Struct. Biol., 2020,60:39-49. doi: 10.1016/j.sbi.2019.10.008
Brosey C A, Tainer J A. Evolving SAXS versatility: Solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology[J]. Curr. Opin. Struct. Biol., 2019,58:197-213. doi: 10.1016/j.sbi.2019.04.004
Cao C, Zhang L, Kent B, Wong S, Garvey C J, Stenzel M H. The protein corona leads to deformation of spherical micelles[J]. Angew. Chem. Int. Ed., 2021,60(18):10342-10349. doi: 10.1002/anie.202101129
Yoneda J S, Cardoso M B. Nanoparticle-induced conformational changes in protein corona revealed by circular dichroism spectroscopy[J]. Nanomedicine, 2023,18(9):709-711. doi: 10.2217/nnm-2023-0115
Bortolini C, Kartanas T, Copic D, Condado Morales I, Zhang Y W, Challa P K, Peter Q, Jávorfi T, Hussain R, Dong M D, Siligardi G, Knowles T P J, Charmet J. Resolving protein mixtures using microfluidic diffusional sizing combined with synchrotron radiation circular dichroism[J]. Lab Chip, 2019,19(1):50-58. doi: 10.1039/C8LC00757H
Wallace B A. Using circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectroscopy to study membrane proteins[J]. Biophys. J., 2010,98(3, Suppl 1):209a-210a.
Dai X, Fu W H, Chi H Y, Mesias V S D, Zhu H N, Leung C W, Liu W, Huang J Q. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures[J]. Nat. Commun., 2021,12(1)1292. doi: 10.1038/s41467-021-21543-3
Lorenz-Fonfria V A. Infrared difference spectroscopy of proteins: From bands to bonds[J]. Chem. Rev., 2020,120(7):3466-3576. doi: 10.1021/acs.chemrev.9b00449
Basu A, Kundu S, Basu C, Ghosh S K, Sur R, Mukherjee A. Biopolymer nanoparticle surface chemistry dictates the nature and extent of protein hard corona[J]. J. Mol. Liq., 2019,282:169-176. doi: 10.1016/j.molliq.2019.03.016
Kozuch J, Ataka K, Heberle J. Surface-enhanced infrared absorption spectroscopy[J]. Nat. Rev. Method Primer, 2023,3(1)70. doi: 10.1038/s43586-023-00253-8
Szekeres G P, Montes-Bayón M, Bettmer J, Kneipp J. Fragmentation of proteins in the corona of gold nanoparticles as observed in live cell surface-enhanced Raman scattering[J]. Anal. Chem., 2020,92(12):8553-8560. doi: 10.1021/acs.analchem.0c01404
Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chem. Rev., 2018,118(10):4946-4980. doi: 10.1021/acs.chemrev.7b00668
Fu W H, Chi H Y, Dai X, Zhu H N, Mesias V S D, Liu W, Huang J Q. Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus[J]. Nat. Commun., 2023,14(1)6996. doi: 10.1038/s41467-023-42812-3
Huang B T, Miao L F, Li J, Xie Z P, Wang Y, Chai J, Zhai Y M. Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing[J]. Nat. Commun., 2022,13(1)1402. doi: 10.1038/s41467-022-29123-9
Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov A P, Edel J B. Solid-state nanopore sensors[J]. Nat. Mater., 2020,5(12):931-951. doi: 10.1038/s41578-020-0229-6
Yusko E C, Bruhn B R, Eggenberger O M, Houghtaling J, Rollings R C, Walsh N C, Nandivada S, Pindrus M, Hall A R, Sept D, Li J, Kalonia D S, Mayer M. Real-time shape approximation and fingerprinting of single proteins using a nanopore[J]. Nat. Nanotechnol., 2017,12(4):360-367. doi: 10.1038/nnano.2016.267
Niedzwiecki D J, Grazul J, Movileanu L. Single-molecule observation of protein adsorption onto an inorganic surface[J]. J. Am. Chem. Soc., 2010,132(31):10816-10822. doi: 10.1021/ja1026858
Li J, Huang B T, Wang Y H, Li A J, Wang Y, Pan Y Y, Chai J, Liu Z, Zhai Y M. Light-driven conversion of silicon nitride nanopore to nanonet for single-protein trapping analysis[J]. Adv. Mater., 2023,35(16)2210342. doi: 10.1002/adma.202210342
Schmid S, Stömmer P, Dietz H, Dekker C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations[J]. Nat. Nanotechnol., 2021,16(11):1244-1250. doi: 10.1038/s41565-021-00958-5
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060