Recent biological applications of corroles: From diagnosis to therapy
- Corresponding author: Jiabin CUI, jiabin.cui@suda.edu.cn
Citation: Jialiang XU, Jiabin CUI. Recent biological applications of corroles: From diagnosis to therapy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Johnson A W, Kay I T. Corroles[J]. Part Ⅰ. Synthesis. J. Chem. Soc., 1965:1620-1629.
Anderson B F, Bartczak T J, Hodgkin D C. Crystal and molecular structure of 8, 12-diethyl-2, 3, 7, 13, 17, 18-hexa-methylcorrole hydrobromide[J]. J. Chem. Soc., Perkin Trans. 2, 1974(9):977-980.
Paolesse R, Mini S, Sagone F, Boschi T, Jaquinod L, Nurco D J, Smith K M. 5, 10, 15-Triphenylcorrole: A product from a modified rothemund reaction[J]. Chem. Commun., 1999,14:1307-1308.
Barata J F B, Neves M G P M S, Faustino M A F, Tomé A C, Cavaleiro J A S. Strategies for corrole functionalization[J]. Chem. Rev., 2017,117(4):3192-3253. doi: 10.1021/acs.chemrev.6b00476
Liu L J, Zhang J Y, An R B, Xue Q, Cheng X, Hu Y X, Huang Z, Wu L Y, Zeng W H, Miao Y X, Li J, Zhou Y, Chen H Y, Liu H, Ye D J. Smart nanosensitizers for activatable sono-photodynamic immunotherapy of tumors by redox-controlled disassembly[J]. Angew. Chem. Int. Ed., 2023,62e202217055. doi: 10.1002/anie.202217055
Walsh C, Rajora M A, Ding L, Nakamura S, Endisha H, Rockel J, Chen J, Kapoor M, Zheng G. Protease-activatable porphyrin molecular beacon for osteoarthritis management[J]. Chem. Biomed. Imaging, 2023,1(1):66-80. doi: 10.1021/cbmi.3c00005
Nemeth T, Yoshizawa S N, Pallier A, Tajima Y, Ma Y, Tóth É, Masai H, Yamakoshi Y. Water-soluble Gd(Ⅲ)-porphyrin complexes capable of both photosensitization and relaxation enhancement[J]. Chem. Biomed. Imaging, 2023,1(2):157-167. doi: 10.1021/cbmi.3c00007
Koszarna B, Gryko D T. Efficient synthesis of meso-substituted corroles in a H2O-MeOH mixture[J]. J. Org. Chem., 2006,71(10):3707-3717. doi: 10.1021/jo060007k
Littler B J, Miller M A, Hung C H, Wagner R W, O'Shea D F, Boyle P D, Lindsey J S. Refined synthesis of 5-substituted dipyrromethanes[J]. J. Org. Chem., 1999,64(4):1391-1396. doi: 10.1021/jo982015+
Gonglach S, Paul S, Haas M, Pillwein F, Sreejith S S, Barman S, De R, Müllegger S, Gerschel P, Apfel U P, Coskun H, Aljabour A, Stadler P, Schöfberger W, Roy S. Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide[J]. Nat. Commun., 2019,10(1)3864. doi: 10.1038/s41467-019-11868-5
De R, Gonglach S, Paul S, Haas M, Sreejith S S, Gerschel P, Apfel U, Vuong T H, Rabeah J, Roy S, Schöfberger W. Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex[J]. Angew. Chem. Int. Ed., 2020,59(26):10527-10534. doi: 10.1002/anie.202000601
Kadish K M, Frémond L, Ou Z, Shao J, Shi C, Anson F C, Burdet F, Gros C P, Barbe J M, Guilard R. Cobalt(Ⅲ) corroles as electrocatalysts for the reduction of dioxygen: Reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads[J]. J. Am. Chem. Soc., 2005,127(15):5625-5631. doi: 10.1021/ja0501060
Brennan B J, Lam Y C, Kim P M, Zhang X, Brudvig G W. Photoelectrochemical cells utilizing tunable corroles[J]. ACS Appl. Mater. Interfaces, 2015,7(29):16124-16130. doi: 10.1021/acsami.5b05050
Alemayehu A B, Day N U, Mani T, Rudine A B, Thomas K E, Gederaas O A, Vinogradov S A, Wamser C C, Ghosh A. Gold tris(carboxyphenyl)corroles as multifunctional materials: Room temperature near-IR phosphorescence and applications to photodynamic therapy and dye-sensitized solar Cells[J]. ACS Appl. Mater. Interfaces, 2016,8(29):18935-18942. doi: 10.1021/acsami.6b04269
Lai S L, Wang L, Yang C, Chan M Y, Guan X G, Kwok C C, Che C M. Gold(Ⅲ) corroles for high performance organic solar cells[J]. Adv Funct. Mater., 2014,24(29):4655-4665. doi: 10.1002/adfm.201400082
Santos C I M, Oliveira E, Barata J F B, Faustino M A F, Cavaleiro J A S, Neves M G P M S, Lodeiro C. New gallium(Ⅲ) corrole complexes as colorimetric probes for toxic cyanide anion[J]. Inorg. Chim. Acta, 2014,417:148-154. doi: 10.1016/j.ica.2013.09.049
Cai F J, Xia F, Guo Y X, Zhu W H, Fu B, Liang X, Wang S F, Cai Z C, Xu H J. "Off-on-off" type of selectively pH-sensing 8-hydroxyquinoline-substituted gallium(Ⅲ) corrole[J]. New J. Chem., 2019,43(46):18012-18017. doi: 10.1039/C9NJ04544A
Santos C I M, Oliveira E, Barata J F B, Faustino M A F, Cavaleiro J A S, Neves M G P M S, Lodeiro C. Corroles as anion chemosensors: Exploiting their fluorescence behaviour from solution to solid-supported devices[J]. J. Mater. Chem., 2012,22(27)13811. doi: 10.1039/c2jm31281f
Sims J D, Hwang J Y, Wagner S, Alonso-Valenteen F, Hanson C, Taguiam J M, Polo R, Harutyunyan I, Karapetyan G, Sorasaenee K, Ibrahim A, Marban E, Moats R, Gray H B, Gross Z, Medina-Kauwe L K. A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity[J]. J. Control. Release, 2015,217:92-101. doi: 10.1016/j.jconrel.2015.08.046
Lemon C M, Marletta M A. Corrole-substituted fluorescent heme proteins[J]. Inorg. Chem., 2021,60(4):2716-2729. doi: 10.1021/acs.inorgchem.0c03599
Gao H, Wu F, Zhao Y, Zhi X, Sun Y F, Shen Z. Highly stable neutral corrole radical: Amphoteric aromatic-antiaromatic switching and efficient photothermal conversion[J]. J. Am. Chem. Soc., 2022,144(8):3458-3467. doi: 10.1021/jacs.1c11716
Sharma V K, Assaraf Y G, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles[J]. Drug Resist. Updates, 2023,67100931. doi: 10.1016/j.drup.2023.100931
Zhan X, Kim D, Ullah Z, Lee W, Gross Z, Churchill D G. Photophysics of corroles and closely related systems for emergent solar energy, medicinal, and materials science applications[J]. Coord. Chem. Rev., 2023,495215363. doi: 10.1016/j.ccr.2023.215363
Ghosh A. Electronic structure of corrole derivatives: Insights from molecular structures, spectroscopy, electrochemistry, and quantum chemical calculations[J]. Chem. Rev., 2017,117(4):3798-3881. doi: 10.1021/acs.chemrev.6b00590
Kumar A, Kim D, Kumar S, Mahammed A, Churchill D G, Gross Z. Milestones in corrole chemistry: Historical ligand syntheses and post-functionalization[J]. Chem. Soc. Rev., 2023,52(2):573-600. doi: 10.1039/D1CS01137E
Stefanelli M, Mastroianni M, Nardis S, Licoccia S, Fronczek F R, Smith K M, Zhu W, Ou Z, Kadish K M, Paolesse R. Functionalization of corroles: The nitration reaction[J]. Inorg. Chem., 2007,46(25):10791-10799. doi: 10.1021/ic7014572
Thomas K E, Alemayehu A B, Conradie J, Beavers C, Ghosh A. Synthesis and molecular structure of gold triarylcorroles[J]. Inorg. Chem., 2011,50(24):12844-12851. doi: 10.1021/ic202023r
Meier-Callahan A E, Gray H B, Gross Z. Stabilization of high-valent metals by corroles: Oxo[tris(pentafluorophenyl)corrolato]chromium(Ⅴ)[J]. Inorg. Chem., 2000,39(16):3605-3607. doi: 10.1021/ic000180d
Gross Z, Golubkov G, Simkhovich L. Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(Ⅴ) corrole[J]. Angew. Chem. Int. Ed., 2000,39(22):4045-4047. doi: 10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-P
Sharma V K, Stark M, Fridman N, Assaraf Y G, Gross Z. Doubly stimulated corrole for organelle-selective antitumor cytotoxicity[J]. J. Med. Chem., 2022,65(8):6100-6115. doi: 10.1021/acs.jmedchem.1c02085
Dan T, Gross Z, Elbaz L. Metallocorroles as nonprecious-metal catalysts for oxygen reduction[J]. Angew. Chem. Int. Ed., 2015,54(47):14080-14084. doi: 10.1002/anie.201505236
Luobeznova I, Simkhovich L, Goldberg I, Gross Z. Electronic Structures and reactivities of corrole-copper complexes[J]. Eur. J. Inorg. Chem., 2004(8):1724-1732.
Chen Q C, Fridman N, Diskin-Posner Y, Gross Z. Palladium complexes of corroles and sapphyrins[J]. Chem.-Eur. J., 2020,26(43):9481-9485. doi: 10.1002/chem.202002682
Rabinovich E, Goldberg I, Gross Z. Gold(Ⅱ) and gold(Ⅲ) corroles[J]. Chem.-Eur. J., 2011,17(44):12294-12301. doi: 10.1002/chem.201102348
Alemayehu A B, Ghosh A. Gold corroles[J]. J. Porphyr. Phthalocyanines, 2011,15(2):106-110. doi: 10.1142/S1088424611003045
Schöfberger W, Lengwin F, Reith L M, List M, Knör G. Lead corrole complexes in solution: Powerful multielectron transfer reagents for redox catalysis[J]. Inorg. Chem. Commun., 2010,13(10):1187-1190. doi: 10.1016/j.inoche.2010.06.047
Reith L M, Stiftinger M, Monkowius U, Knör G, Schoefberger W. Synthesis and characterization of a stable bismuth(Ⅲ) A3-corrole[J]. Inorg. Chem., 2011,50(14):6788-6797. doi: 10.1021/ic200840m
Gross Z, Galili N. N-substituted corroles: A novel class of chiral ligands[J]. Angew. Chem. Int. Ed., 1999,38(16):2366-2369. doi: 10.1002/(SICI)1521-3773(19990816)38:16<2366::AID-ANIE2366>3.0.CO;2-W
Ueta K, Fukuda M, Kim G, Shimizu S, Tanaka T, Kim D, Osuka A. The first silicon(Ⅳ) corrole complexes: Synthesis, structures, properties, and formation of a μ-oxo dimer[J]. Chem.-Eur. J., 2018,24(30):7637-7646. doi: 10.1002/chem.201800165
Pomarico G, Monti D, Bischetti M, Savoldelli A, Fronczek F R, Smith K M, Genovese D, Prodi L, Paolesse R. Silicon(Ⅳ) corroles[J]. Chem.-Eur. J., 2018,24(33):8438-8446. doi: 10.1002/chem.201801246
Simkhovich L, Mahammed A, Goldberg I, Gross Z. Synthesis and characterization of germanium, tin, phosphorus, iron, and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts[J]. Chem.-Eur. J., 2001,7(5):1041-1055. doi: 10.1002/1521-3765(20010302)7:5<1041::AID-CHEM1041>3.0.CO;2-8
Nayak P, Nayak M, Meena K, Kar S. Oxo(corrolato)vanadium(Ⅳ) catalyzed epoxidation: Oxo(peroxo)(corrolato)vanadium(Ⅴ) is the true catalytic species[J]. New J. Chem., 2022,46(10):4634-4646. doi: 10.1039/D1NJ06015E
Gross Z, Simkhovich L, Galili N. First catalysis by corrole metal complexes: Epoxidation, hydroxylation, and cyclopropanation[J]. Chem. Commun., 1999,7:599-600.
Luobeznova I, Raizman M, Goldberg I, Gross Z. Synthesis and full characterization of molybdenum and antimony corroles and utilization of the latter complexes as very efficient catalysts for highly selective aerobic oxygenation reactions[J]. Inorg. Chem., 2006,45(1):386-394. doi: 10.1021/ic051483g
Einrem R F, Braband H, Fox T, Vazquez-Lima H, Alberto R, Ghosh A. Synthesis and molecular structure of 99Tc corroles[J]. Chem.-Eur. J., 2016,22(52):18747-18751. doi: 10.1002/chem.201605015
Bendix J, Dmochowski I J, Gray H B, Mahammed A, Simkhovich L, Gross Z. Structural, Electrochemical, and photophysical properties of gallium(Ⅲ) 5, 10, 15-tris(pentafluorophenyl)corrole[J]. Angew. Chem. Int. Ed., 2000,39(22):4048-4051. doi: 10.1002/1521-3773(20001117)39:22<4048::AID-ANIE4048>3.0.CO;2-7
Ziegler J A, Buckley H L, Arnold J. Synthesis and reactivity of tantalum corrole complexes[J]. Dalton Trans., 2017,46(3):780-785. doi: 10.1039/C6DT04265A
Einrem R F, Gagnon K J, Alemayehu A B, Ghosh A. Metal-ligand misfits: Facile access to rhenium-oxo corroles by oxidative metalation[J]. Chem. Eur. J., 2016,22(2):517-520. doi: 10.1002/chem.201504307
Alemayehu A B, Gagnon K J, Terner J, Ghosh A. Oxidative metalation as a route to size-mismatched macrocyclic complexes: Osmium corroles[J]. Angew. Chem. Int. Ed., 2014,53(52):14411-14414. doi: 10.1002/anie.201405890
Palmer J H, Day M W, Wilson A D, Henling L M, Gross Z, Gray H B. Iridium corroles[J]. J. Am. Chem. Soc., 2008,130(25):7786-7787. doi: 10.1021/ja801049t
Alemayehu A B, Vazquez-Lima H, Beavers C M, Gagnon K J, Bendix J, Ghosh A. Platinum corroles[J]. Chem. Commun., 2014,50(76):11093-11096. doi: 10.1039/C4CC02548B
Mahammed A, Gross Z. Aluminum corrolin, a novel chlorophyll analogue[J]. J. Inorg. Biochem., 2002,88(3/4):305-309.
Buckley H L, Anstey M R, Gryko D T, Arnold J. Lanthanide corroles: A new class of macrocyclic lanthanide complexes[J]. Chem. Commun., 2013,49(30)3104. doi: 10.1039/c3cc38806a
Armstrong K C, Hohloch S, Lohrey T D, Zarkesh R A, Arnold J, Anstey M R. Control of clustering behavior in anionic cerium(Ⅲ) corrole complexes: From oligomers to monomers[J]. Dalton Trans., 2016,45(46):18653-18660. doi: 10.1039/C6DT03884K
Buckley H L, Chomitz W A, Koszarna B, Tasior M, Gryko D T, Brothers P J, Arnold J. Synthesis of lithium corrole and its use as a reagent for the preparation of cyclopentadienyl zirconium and titanium corrole complexes[J]. Chem. Commun., 2012,48(87)10766. doi: 10.1039/c2cc35984g
Albrett A M, Conradie J, Boyd P D W, Clark G R, Ghosh A, Brothers P J. Corrole as a binucleating ligand: Preparation, molecular structure and density functional theory study of diboron corroles[J]. J. Am. Chem. Soc., 2008,130(10):2888-2889. doi: 10.1021/ja077785u
Lu G F, Yan S, Shi M Y, Yu W H, Li J, Zhu W H, Ou Z P, Kadish K M. A new class of rare earth tetrapyrrole sandwich complexes containing corrole and phthalocyanine macrocycles: Synthesis, physicochemical characterization and X‑ray analysis[J]. Chem. Commun., 2015,51(12):2411-2413. doi: 10.1039/C4CC09755F
Kadish K M, Burdet F, Ou Z, Shao J, Guilard R. Synthesis, physicochemical and electrochemical properties of metal bonded ruthenium corrole homodimers[J]. J. Organomet. Chem., 2002,652(1/2):69-76.
Padilla R, Buckley H L, Ward A L, Arnold J. Synthesis, Structure and reactivity of group 4 corrole complexes[J]. Chem. Commun., 2014,50(22)2922. doi: 10.1039/c4cc00037d
Nigel-Etinger I, Goldberg I, Gross Z. 5d early-transition-metal corroles: A trioxo-bridged binuclear tungsten(Ⅵ) derivative[J]. Inorg. Chem., 2012,51(4):1983-1985. doi: 10.1021/ic202325h
Lu G F, Li J, Yan S, Zhu W H, Ou Z P, Kadish K M. Synthesis and characterization of rare earth corrole-phthalocyanine heteroleptic triple-decker complexes[J]. Inorg. Chem., 2015,54(12):5795-5805. doi: 10.1021/acs.inorgchem.5b00477
Ward A L, Buckley H L, Lukens W W, Arnold J. Synthesis and characterization of thorium(Ⅳ) and uranium(Ⅳ) corrole complexes[J]. J. Am. Chem. Soc., 2013,135(37):13965-13971. doi: 10.1021/ja407203s
Ganguly S, Ghosh A. Seven clues to ligand noninnocence: The metallocorrole paradigm[J]. Acc. Chem. Res., 2019,52(7):2003-2014. doi: 10.1021/acs.accounts.9b00115
Will S, Lex J, Vogel E, Schmickler H, Gisselbrecht J, Haubtmann C, Bernard M, Gorss M. Nickel and copper corroles: Well-known complexes in a new light[J]. Angew. Chem. Int. Ed., 1997,36(4):357-361. doi: 10.1002/anie.199703571
Alemayehu A B, Gonzalez E, Hansen L K, Ghosh A. Copper corroles are inherently saddled[J]. Inorg. Chem., 2009,48(16):7794-7799. doi: 10.1021/ic900744v
Lemon C M, Huynh M, Maher A G, Anderson B L, Bloch E D, Powers D C, Nocera D G. Electronic structure of copper corroles[J]. Angew. Chem. Int. Ed., 2016,55(6):2176-2180. doi: 10.1002/anie.201509099
Wu F, Liu J, Mishra P, Komeda T, Mack J, Chang Y, Kobayashi N, Shen Z. Modulation of the molecular spintronic properties of adsorbed copper corroles[J]. Nat. Commun., 2015,6(1)7547. doi: 10.1038/ncomms8547
Brückner C, Barta C A, Briñas R P, Krause B J A. Synthesis and structure of[meso-triarylcorrolato]silver(Ⅲ)[J]. Inorg. Chem., 2003,42(5):1673-1680. doi: 10.1021/ic0261171
Stefanelli M, Shen J, Zhu W, Mastroianni M, Mandoj F, Nardis S, Ou Z, Kadish K M, Fronczek F R, Smith K M, Paolesse R. Demetalation of silver(Ⅲ) corrolates[J]. Inorg. Chem., 2009,48(14):6879-6887. doi: 10.1021/ic900859a
Sinha W, Sommer M G, Deibel N, Ehret F, Sarkar B, Kar S. Silver corrole complexes: Unusual oxidation states and near-IR-absorbing dyes[J]. Chem.-Eur. J., 2014,20(48):15920-15932. doi: 10.1002/chem.201403609
Thomas K E, Vazquez-Lima H, Fang Y, Song Y, Gagnon K J, Beavers C M, Kadish K M, Ghosh A. Ligand noninnocence in coinage metal corroles: A silver knife-edge[J]. Chem.-Eur. J., 2015,21(47):16839-16847. doi: 10.1002/chem.201502150
Stefanelli M, Ricci A, Chiarini M, Lo Sterzo C, Berna B B, Pomarico G, Sabuzi F, Galloni P, Fronczek F R, Smith K M, Wang L, Ou Z P, Kadish K M, Paolesse R. β-arylethynyl substituted silver corrole complexes[J]. Dalton Trans., 2019,48(36):13589-13598. doi: 10.1039/C9DT03166A
Xu J L, Zhu L, Gao H, Li C H, Zhu M J, Jia Z Y, Zhu X Y, Zhao Y, Li S C, Wu F, Shen Z. Ligand non-innocence and single molecular spintronic properties of AgⅡ dibenzocorrole radical on Ag(111)[J]. Angew. Chem. Int. Ed., 2021,60(21):11702-11706. doi: 10.1002/anie.202016674
Jérôme F, Barbe J M, Gros C P, Guilard R, Fischer J, Weiss R. Peculiar reactivity of face to face biscorrole and porphyrin-corrole with a nickel(Ⅱ) salt[J]. X-ray structural characterization of a new nickel(Ⅱ) bisoxocorrole. New J. Chem., 2001,25(1):93-101.
Chen Q C, Fite S, Fridman N, Tumanskii B, Mahammed A, Gross Z. Hydrogen evolution catalyzed by corrole-chelated nickel complexes, characterized in all catalysis-relevant oxidation states[J]. ACS Catal., 2022,12(8):4310-4317. doi: 10.1021/acscatal.1c05243
Aviv-Harel I, Gross Z. Coordination chemistry of corroles with focus on main group elements[J]. Coord. Chem. Rev., 2011,255(7/8):717-736.
Naitana M L, Nardis S, Pomarico G, Raggio M, Caroleo F, Cicero D O, Lentini S, Prodi L, Genovese D, Mitta S, Sgarlata A, Fanfoni M, Persichetti L, Paolesse R. A highly emissive water-soluble phosphorus corrole[J]. Chem.-Eur. J., 2017,23(4):905-916. doi: 10.1002/chem.201604233
Zahn C, Stensitzki T, Gerecke M, Berg A, Mahammed A, Gross Z, Heyne K. Ultrafast dynamics of Sb-corroles: A combined vis-pump supercontinuum probe and broadband fluorescence up-conversion study[J]. Molecules, 2017,22(7)1174. doi: 10.3390/molecules22071174
Babu B, Prinsloo E, Mack J, Nyokong T. Synthesis, characterization and photodynamic activity of Sn(Ⅳ) triarylcorroles with red-shifted Q bands[J]. New J. Chem., 2019,43(47):18805-18812. doi: 10.1039/C9NJ03391B
Vestfrid J, Goldberg I, Gross Z. Tuning the photophysical and redox properties of metallocorroles by iodination[J]. Inorg. Chem., 2014,53(19):10536-10542. doi: 10.1021/ic501585a
Wagnert L, Rubin R, Berg A, Mahammed A, Gross Z, Levanon H. Photoexcited triplet state properties of brominated and nonbrominated Ga(Ⅲ)-corroles as studied by time-resolved electron paramagnetic resonance[J]. J. Phys. Chem. B, 2010,114(45):14303-14308. doi: 10.1021/jp911465p
Vestfrid J, Botoshansky M, Palmer J H, Durrell A C, Gray H B, Gross Z. Iodinated aluminum(Ⅲ) corroles with long-lived triplet excited states[J]. J. Am. Chem. Soc., 2011,133(33):12899-12901. doi: 10.1021/ja202692b
Mahammed A, Gross Z. Corroles as triplet photosensitizers[J]. Coord. Chem. Rev., 2019,379:121-132. doi: 10.1016/j.ccr.2017.08.028
Shao W L, Wang H, He S, Shi L, Peng K M, Lin Y F, Zhang L, Ji L N, Liu H Y. Photophysical properties and singlet oxygen generation of three sets of halogenated corroles[J]. J. Phys. Chem. B, 2012,116(49):14228-14234. doi: 10.1021/jp306826p
Soll M, Sudhakar K, Fridman N, Müller A, Röder B, Gross Z. One-pot conversion of fluorophores to phosphorophores[J]. Org. Lett., 2016,18(22):5840-5843. doi: 10.1021/acs.orglett.6b02877
Pohl J, Saltsman I, Mahammed A, Gross Z, Röder B. Inhibition of green algae growth by corrole-based photosensitizers[J]. J. Appl. Microbiol., 2015,118(2):305-312. doi: 10.1111/jam.12690
Einrem R F, Alemayehu A B, Borisov S M, Ghosh A, Gederaas O A. Amphiphilic rhenium-oxo corroles as a new class of sensitizers for photodynamic therapy[J]. ACS Omega, 2020,5(18):10596-10601. doi: 10.1021/acsomega.0c01090
Shi Z X, Han X, Hu W B, Bai H, Peng B, Ji L, Fan Q L, Li L, Huang W. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations[J]. Chem. Soc. Rev., 2020,49(21):7533-7567. doi: 10.1039/D0CS00234H
Agadjanian H, Ma J, Rentsendorj A, Valluripalli V, Hwang J Y, Mahammed A, Farkas D L, Gray H B, Gross Z, Medina-Kauwe L K. Tumor detection and elimination by a targeted gallium corrole[J]. Proc. Natl. Acad. Sci. U. S. A., 2009,106(15):6105-6110. doi: 10.1073/pnas.0901531106
Vestfrid J, Kothari R, Kostenko A, Goldberg I, Tumanskii B, Gross Z. Intriguing physical and chemical properties of phosphorus corroles[J]. Inorg. Chem., 2016,55(12):6061-6067. doi: 10.1021/acs.inorgchem.6b00544
Desbois N, Michelin C, Chang Y, Stupar V, Bonnaud M, Pacquelet S, Gros C P. Synthetic strategy for preparation of a folate corrole DOTA heterobimetallic Cu-Gd complex as a potential bimodal contrast agent in medical imaging[J]. Tetrahedron Lett., 2015,56(51):7128-7131. doi: 10.1016/j.tetlet.2015.11.032
Hu L F, Xu Y, Zhao Y, Mei Z J, Xiong C X, Xiao J Y, Zhang J X, Tian J. Supramolecular nanovesicles with in-situ switchable photothermal/photodynamic effects for precisely controllable cancer phototherapy[J]. Chem. Eng. J., 2023,476146829. doi: 10.1016/j.cej.2023.146829
Calvete M J F, Pinto S M A, Pereira M M, Geraldes C F G C. Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications[J]. Coord. Chem. Rev., 2017,333:82-107. doi: 10.1016/j.ccr.2016.11.011
Wahsner J, Gale E M, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: Current challenges and new frontiers[J]. Chem. Rev., 2019,119(2):957-1057. doi: 10.1021/acs.chemrev.8b00363
Jiang X, Liu R X, Liu H Y, Chang C K. Corrole-based photodynamic antitumor therapy[J]. J. Chin. Chem. Soc., 2019,66(9):1090-1099. doi: 10.1002/jccs.201900176
Knoll J D, Turro C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy[J]. Coord. Chem. Rev., 2015,282-283:110-126. doi: 10.1016/j.ccr.2014.05.018
Wang L L, Zhang L, Wang H, Zhang Y, Huang J T, Zhu H, Ying X, Ji L N, Liu H Y. Photoinduced electron transfer between anionic corrole and DNA[J]. J. Phys. Chem. A, 2016,120(4):535-542. doi: 10.1021/acs.jpca.5b11021
Huang G, Yang W, Si L P, Song Y Q, Li M Y, Liu Z Y, Liao Y H, Liu H Y. Photodynamic antitumor activity of dihydroxyl A2B triaryl corrole and its gallium(Ⅲ) and phosphorus(Ⅴ) complexes[J]. J. Mol. Struct., 2024,1295136758. doi: 10.1016/j.molstruc.2023.136758
Yadav P, Khoury S, Fridman N, Sharma V K, Kumar A, Majdoub M, Kumar A, Diskin-Posner Y, Mahammed A, Gross Z. Trifluoromethyl hydrolysis en route to corroles with increased druglikeness[J]. Angew. Chem. Int. Ed., 2021,60(23):12829-12834. doi: 10.1002/anie.202103477
Sharma V K, Mahammed A, Soll M, Tumanskii B, Gross Z. Corroles and corrole/transferrin nanoconjugates as candidates for sonodynamic therapy[J]. Chem. Commun., 2019,55(85):12789-12792. doi: 10.1039/C9CC06494J
Soy R C, Babu B, Mack J, Nyokong T. The photodynamic activities of the gold nanoparticle conjugates of phosphorus(Ⅴ) and gallium(Ⅲ) A3 meso-triarylcorroles[J]. Dyes Pigm., 2021,194109631. doi: 10.1016/j.dyepig.2021.109631
Cheng F, Wang H H, Ali A, Kandhadi J, Wang H, Wang X L, Liu H Y. Photophysical properties and photodynamic anti-tumor activity of corrole-coumarin dyads[J]. J. Porphyr. Phthalocyanines, 2018,22(9/10):886-898.
Sun Y M, Jiang X, Liu Z Y, Liu L G, Liao Y H, Zeng L, Ye Y, Liu H Y. Hydroxy-corrole and its gallium(Ⅲ) complex as new photosensitizer for photodynamic therapy against breast carcinoma[J]. Eur. J. Med. Chem., 2020,208112794. doi: 10.1016/j.ejmech.2020.112794
Jung H S, Verwilst P, Sharma A, Shin J, Sessler J L, Kim J S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe[J]. Chem. Soc. Rev., 2018,47(7):2280-2297. doi: 10.1039/C7CS00522A
Mao Q L, Fang J, Wang A N, Zhang Y Q, Cui C X, Ye S Y, Zhao Y, Feng Y L, Li J C, Shi H B. Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for activated tumor theranostics[J]. Angew. Chem. Int. Ed., 2021,60(44):23805-23811. doi: 10.1002/anie.202109863
Gao H, Zhi X, Wu F, Zhao Y, Cai F F, Li P F, Shen Z. Molecular engineering of corrole radicals by polycyclic aromatic fusion: Towards open-shell near-infrared materials for efficient photothermal therapy[J]. Angew. Chem. Int. Ed., 2023,62(40)e202309208. doi: 10.1002/anie.202309208
Lacerda P S S, Bartolomeu M, Gomes A T P C, Duarte A S, Almeida A, Faustino M A F, Neves M G P M S, Barata J F B. Can corrole dimers be good photosensitizers to kill bacteria?[J]. Microorganisms, 2022,10(6)1167. doi: 10.3390/microorganisms10061167
Bornhütter T, Pohl J, Fischer C, Saltsman I, Mahammed A, Gross Z, Röder B. Development of singlet oxygen luminescence kinetics during the photodynamic inactivation of green algae[J]. Molecules, 2016,21(4)485. doi: 10.3390/molecules21040485
Shamali N, Preuß A, Saltsman I, Mahammed A, Gross Z, Däschlein G, Röder B. In vitro photodynamic inactivation (PDI) of pathogenic germs inducing onychomycosis[J]. Photodiagn. Photodyn. Ther., 2018,24:358-365. doi: 10.1016/j.pdpdt.2018.11.002
Gomes L M F, Mahammed A, Prosser K E, Smith J R, Silverman M A, Walsby C J, Gross Z, Storr T. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation[J]. Chem. Sci., 2019,10(6):1634-1643. doi: 10.1039/C8SC04660C
Soll M, Goldshtein H, Rotkopf R, Russek-Blum N, Gross Z. A synthetic SOD/catalase mimic compound for the treatment of ALS[J]. Antioxidants, 2021,10(6)827. doi: 10.3390/antiox10060827
Haber A, Gross Z. Catalytic antioxidant therapy by metallodrugs: Lessons from metallocorroles[J]. Chem. Commun., 2015,51(27):5812-5827. doi: 10.1039/C4CC08715A
Haber A, Mahammed A, Fuhrman B, Volkova N, Coleman R, Hayek T, Aviram M, Gross Z. Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice[J]. Angew. Chem. Int. Ed., 2008,47(41):7896-7900. doi: 10.1002/anie.200801149
Cai H, Jia F, Cheng Q H, Ankri R, Cui J B, Wang L Y. Advanced biological optical sensors for visualization and quantification of radionuclides[J]. Trends Anal. Chem., 2024,175117704. doi: 10.1016/j.trac.2024.117704
Kumar A, Yadav P, Majdoub M, Saltsman I, Fridman N, Kumar S, Kumar A, Mahammed A, Gross Z. Corroles: The hitherto elusive parent macrocycle and its metal complexes[J]. Angew. Chem. Int. Ed., 2021,60(47):25097-25103. doi: 10.1002/anie.202110964
Tingting Hu , Chao Shen , Xueyan Wang , Fengbo Wu , Zhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
Ling-Ling Wu , Xiangchuan Meng , Qingyang Zhang , Xiaowan Han , Feiya Yang , Qinghua Wang , Hai-Yu Hu , Nianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663
Zihong Li , Jie Cheng , Ping Huang , Guoliang Wu , Weiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153
PDT: photodynamic therapy; PDI: photodynamic inactivation; PTT: photothermal therapy; Elements with green backgrounds mean those corrole complexes have been obtained but have not yet been used in biological applications.