Citation: Jialiang XU, Jiabin CUI. Recent biological applications of corroles: From diagnosis to therapy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245 shu

Recent biological applications of corroles: From diagnosis to therapy

  • Corresponding author: Jiabin CUI, jiabin.cui@suda.edu.cn
  • Received Date: 29 June 2024
    Revised Date: 25 October 2024

Figures(7)

  • Corrole, a representative branch of porphyrin, has recently gained popularity. These molecules, viewed as ring-contracted porphyrinoids containing direct pyrrole-pyrrole linkages due to the absence of a meso-carbon atom, exhibit significant photo-physicochemical properties that make them attractive for various applications. Herein, this review comprehensively discusses the remarkable properties of corrole complexes, as well as related structures and chelation properties. It further explores the biological applications of corrole complexes for in vivo imaging and anticancer therapy. Additionally, it addresses common research bottlenecks and challenges, providing insights into future potential applications in disease diagnosis and treatment. Generally, this review aims to illuminate the significance of corrole complexes and their promising biological applications.
  • 加载中
    1. [1]

      Johnson A W, Kay I T. Corroles[J]. Part Ⅰ. Synthesis. J. Chem. Soc., 1965:1620-1629.

    2. [2]

      Anderson B F, Bartczak T J, Hodgkin D C. Crystal and molecular structure of 8, 12-diethyl-2, 3, 7, 13, 17, 18-hexa-methylcorrole hydrobromide[J]. J. Chem. Soc., Perkin Trans. 2, 1974(9):977-980.

    3. [3]

      Paolesse R, Mini S, Sagone F, Boschi T, Jaquinod L, Nurco D J, Smith K M. 5, 10, 15-Triphenylcorrole: A product from a modified rothemund reaction[J]. Chem. Commun., 1999,14:1307-1308.

    4. [4]

      Barata J F B, Neves M G P M S, Faustino M A F, Tomé A C, Cavaleiro J A S. Strategies for corrole functionalization[J]. Chem. Rev., 2017,117(4):3192-3253. doi: 10.1021/acs.chemrev.6b00476

    5. [5]

      Liu L J, Zhang J Y, An R B, Xue Q, Cheng X, Hu Y X, Huang Z, Wu L Y, Zeng W H, Miao Y X, Li J, Zhou Y, Chen H Y, Liu H, Ye D J. Smart nanosensitizers for activatable sono-photodynamic immunotherapy of tumors by redox-controlled disassembly[J]. Angew. Chem. Int. Ed., 2023,62e202217055. doi: 10.1002/anie.202217055

    6. [6]

      Walsh C, Rajora M A, Ding L, Nakamura S, Endisha H, Rockel J, Chen J, Kapoor M, Zheng G. Protease-activatable porphyrin molecular beacon for osteoarthritis management[J]. Chem. Biomed. Imaging, 2023,1(1):66-80. doi: 10.1021/cbmi.3c00005

    7. [7]

      Nemeth T, Yoshizawa S N, Pallier A, Tajima Y, Ma Y, Tóth É, Masai H, Yamakoshi Y. Water-soluble Gd(Ⅲ)-porphyrin complexes capable of both photosensitization and relaxation enhancement[J]. Chem. Biomed. Imaging, 2023,1(2):157-167. doi: 10.1021/cbmi.3c00007

    8. [8]

      Koszarna B, Gryko D T. Efficient synthesis of meso-substituted corroles in a H2O-MeOH mixture[J]. J. Org. Chem., 2006,71(10):3707-3717. doi: 10.1021/jo060007k

    9. [9]

      Littler B J, Miller M A, Hung C H, Wagner R W, O'Shea D F, Boyle P D, Lindsey J S. Refined synthesis of 5-substituted dipyrromethanes[J]. J. Org. Chem., 1999,64(4):1391-1396. doi: 10.1021/jo982015+

    10. [10]

      Gonglach S, Paul S, Haas M, Pillwein F, Sreejith S S, Barman S, De R, Müllegger S, Gerschel P, Apfel U P, Coskun H, Aljabour A, Stadler P, Schöfberger W, Roy S. Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide[J]. Nat. Commun., 2019,10(1)3864. doi: 10.1038/s41467-019-11868-5

    11. [11]

      De R, Gonglach S, Paul S, Haas M, Sreejith S S, Gerschel P, Apfel U, Vuong T H, Rabeah J, Roy S, Schöfberger W. Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex[J]. Angew. Chem. Int. Ed., 2020,59(26):10527-10534. doi: 10.1002/anie.202000601

    12. [12]

      Kadish K M, Frémond L, Ou Z, Shao J, Shi C, Anson F C, Burdet F, Gros C P, Barbe J M, Guilard R. Cobalt(Ⅲ) corroles as electrocatalysts for the reduction of dioxygen: Reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads[J]. J. Am. Chem. Soc., 2005,127(15):5625-5631. doi: 10.1021/ja0501060

    13. [13]

      Brennan B J, Lam Y C, Kim P M, Zhang X, Brudvig G W. Photoelectrochemical cells utilizing tunable corroles[J]. ACS Appl. Mater. Interfaces, 2015,7(29):16124-16130. doi: 10.1021/acsami.5b05050

    14. [14]

      Alemayehu A B, Day N U, Mani T, Rudine A B, Thomas K E, Gederaas O A, Vinogradov S A, Wamser C C, Ghosh A. Gold tris(carboxyphenyl)corroles as multifunctional materials: Room temperature near-IR phosphorescence and applications to photodynamic therapy and dye-sensitized solar Cells[J]. ACS Appl. Mater. Interfaces, 2016,8(29):18935-18942. doi: 10.1021/acsami.6b04269

    15. [15]

      Lai S L, Wang L, Yang C, Chan M Y, Guan X G, Kwok C C, Che C M. Gold(Ⅲ) corroles for high performance organic solar cells[J]. Adv Funct. Mater., 2014,24(29):4655-4665. doi: 10.1002/adfm.201400082

    16. [16]

      Santos C I M, Oliveira E, Barata J F B, Faustino M A F, Cavaleiro J A S, Neves M G P M S, Lodeiro C. New gallium(Ⅲ) corrole complexes as colorimetric probes for toxic cyanide anion[J]. Inorg. Chim. Acta, 2014,417:148-154. doi: 10.1016/j.ica.2013.09.049

    17. [17]

      Cai F J, Xia F, Guo Y X, Zhu W H, Fu B, Liang X, Wang S F, Cai Z C, Xu H J. "Off-on-off" type of selectively pH-sensing 8-hydroxyquinoline-substituted gallium(Ⅲ) corrole[J]. New J. Chem., 2019,43(46):18012-18017. doi: 10.1039/C9NJ04544A

    18. [18]

      Santos C I M, Oliveira E, Barata J F B, Faustino M A F, Cavaleiro J A S, Neves M G P M S, Lodeiro C. Corroles as anion chemosensors: Exploiting their fluorescence behaviour from solution to solid-supported devices[J]. J. Mater. Chem., 2012,22(27)13811. doi: 10.1039/c2jm31281f

    19. [19]

      Sims J D, Hwang J Y, Wagner S, Alonso-Valenteen F, Hanson C, Taguiam J M, Polo R, Harutyunyan I, Karapetyan G, Sorasaenee K, Ibrahim A, Marban E, Moats R, Gray H B, Gross Z, Medina-Kauwe L K. A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity[J]. J. Control. Release, 2015,217:92-101. doi: 10.1016/j.jconrel.2015.08.046

    20. [20]

      Lemon C M, Marletta M A. Corrole-substituted fluorescent heme proteins[J]. Inorg. Chem., 2021,60(4):2716-2729. doi: 10.1021/acs.inorgchem.0c03599

    21. [21]

      Gao H, Wu F, Zhao Y, Zhi X, Sun Y F, Shen Z. Highly stable neutral corrole radical: Amphoteric aromatic-antiaromatic switching and efficient photothermal conversion[J]. J. Am. Chem. Soc., 2022,144(8):3458-3467. doi: 10.1021/jacs.1c11716

    22. [22]

      Sharma V K, Assaraf Y G, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles[J]. Drug Resist. Updates, 2023,67100931. doi: 10.1016/j.drup.2023.100931

    23. [23]

      Zhan X, Kim D, Ullah Z, Lee W, Gross Z, Churchill D G. Photophysics of corroles and closely related systems for emergent solar energy, medicinal, and materials science applications[J]. Coord. Chem. Rev., 2023,495215363. doi: 10.1016/j.ccr.2023.215363

    24. [24]

      Ghosh A. Electronic structure of corrole derivatives: Insights from molecular structures, spectroscopy, electrochemistry, and quantum chemical calculations[J]. Chem. Rev., 2017,117(4):3798-3881. doi: 10.1021/acs.chemrev.6b00590

    25. [25]

      Kumar A, Kim D, Kumar S, Mahammed A, Churchill D G, Gross Z. Milestones in corrole chemistry: Historical ligand syntheses and post-functionalization[J]. Chem. Soc. Rev., 2023,52(2):573-600. doi: 10.1039/D1CS01137E

    26. [26]

      Stefanelli M, Mastroianni M, Nardis S, Licoccia S, Fronczek F R, Smith K M, Zhu W, Ou Z, Kadish K M, Paolesse R. Functionalization of corroles: The nitration reaction[J]. Inorg. Chem., 2007,46(25):10791-10799. doi: 10.1021/ic7014572

    27. [27]

      Thomas K E, Alemayehu A B, Conradie J, Beavers C, Ghosh A. Synthesis and molecular structure of gold triarylcorroles[J]. Inorg. Chem., 2011,50(24):12844-12851. doi: 10.1021/ic202023r

    28. [28]

      Meier-Callahan A E, Gray H B, Gross Z. Stabilization of high-valent metals by corroles: Oxo[tris(pentafluorophenyl)corrolato]chromium(Ⅴ)[J]. Inorg. Chem., 2000,39(16):3605-3607. doi: 10.1021/ic000180d

    29. [29]

      Gross Z, Golubkov G, Simkhovich L. Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(Ⅴ) corrole[J]. Angew. Chem. Int. Ed., 2000,39(22):4045-4047. doi: 10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-P

    30. [30]

      Sharma V K, Stark M, Fridman N, Assaraf Y G, Gross Z. Doubly stimulated corrole for organelle-selective antitumor cytotoxicity[J]. J. Med. Chem., 2022,65(8):6100-6115. doi: 10.1021/acs.jmedchem.1c02085

    31. [31]

      Dan T, Gross Z, Elbaz L. Metallocorroles as nonprecious-metal catalysts for oxygen reduction[J]. Angew. Chem. Int. Ed., 2015,54(47):14080-14084. doi: 10.1002/anie.201505236

    32. [32]

      Luobeznova I, Simkhovich L, Goldberg I, Gross Z. Electronic Structures and reactivities of corrole-copper complexes[J]. Eur. J. Inorg. Chem., 2004(8):1724-1732.

    33. [33]

      Chen Q C, Fridman N, Diskin-Posner Y, Gross Z. Palladium complexes of corroles and sapphyrins[J]. Chem.-Eur. J., 2020,26(43):9481-9485. doi: 10.1002/chem.202002682

    34. [34]

      Rabinovich E, Goldberg I, Gross Z. Gold(Ⅱ) and gold(Ⅲ) corroles[J]. Chem.-Eur. J., 2011,17(44):12294-12301. doi: 10.1002/chem.201102348

    35. [35]

      Alemayehu A B, Ghosh A. Gold corroles[J]. J. Porphyr. Phthalocyanines, 2011,15(2):106-110. doi: 10.1142/S1088424611003045

    36. [36]

      Schöfberger W, Lengwin F, Reith L M, List M, Knör G. Lead corrole complexes in solution: Powerful multielectron transfer reagents for redox catalysis[J]. Inorg. Chem. Commun., 2010,13(10):1187-1190. doi: 10.1016/j.inoche.2010.06.047

    37. [37]

      Reith L M, Stiftinger M, Monkowius U, Knör G, Schoefberger W. Synthesis and characterization of a stable bismuth(Ⅲ) A3-corrole[J]. Inorg. Chem., 2011,50(14):6788-6797. doi: 10.1021/ic200840m

    38. [38]

      Gross Z, Galili N. N-substituted corroles: A novel class of chiral ligands[J]. Angew. Chem. Int. Ed., 1999,38(16):2366-2369. doi: 10.1002/(SICI)1521-3773(19990816)38:16<2366::AID-ANIE2366>3.0.CO;2-W

    39. [39]

      Ueta K, Fukuda M, Kim G, Shimizu S, Tanaka T, Kim D, Osuka A. The first silicon(Ⅳ) corrole complexes: Synthesis, structures, properties, and formation of a μ-oxo dimer[J]. Chem.-Eur. J., 2018,24(30):7637-7646. doi: 10.1002/chem.201800165

    40. [40]

      Pomarico G, Monti D, Bischetti M, Savoldelli A, Fronczek F R, Smith K M, Genovese D, Prodi L, Paolesse R. Silicon(Ⅳ) corroles[J]. Chem.-Eur. J., 2018,24(33):8438-8446. doi: 10.1002/chem.201801246

    41. [41]

      Simkhovich L, Mahammed A, Goldberg I, Gross Z. Synthesis and characterization of germanium, tin, phosphorus, iron, and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts[J]. Chem.-Eur. J., 2001,7(5):1041-1055. doi: 10.1002/1521-3765(20010302)7:5<1041::AID-CHEM1041>3.0.CO;2-8

    42. [42]

      Nayak P, Nayak M, Meena K, Kar S. Oxo(corrolato)vanadium(Ⅳ) catalyzed epoxidation: Oxo(peroxo)(corrolato)vanadium(Ⅴ) is the true catalytic species[J]. New J. Chem., 2022,46(10):4634-4646. doi: 10.1039/D1NJ06015E

    43. [43]

      Gross Z, Simkhovich L, Galili N. First catalysis by corrole metal complexes: Epoxidation, hydroxylation, and cyclopropanation[J]. Chem. Commun., 1999,7:599-600.

    44. [44]

      Luobeznova I, Raizman M, Goldberg I, Gross Z. Synthesis and full characterization of molybdenum and antimony corroles and utilization of the latter complexes as very efficient catalysts for highly selective aerobic oxygenation reactions[J]. Inorg. Chem., 2006,45(1):386-394. doi: 10.1021/ic051483g

    45. [45]

      Einrem R F, Braband H, Fox T, Vazquez-Lima H, Alberto R, Ghosh A. Synthesis and molecular structure of 99Tc corroles[J]. Chem.-Eur. J., 2016,22(52):18747-18751. doi: 10.1002/chem.201605015

    46. [46]

      Bendix J, Dmochowski I J, Gray H B, Mahammed A, Simkhovich L, Gross Z. Structural, Electrochemical, and photophysical properties of gallium(Ⅲ) 5, 10, 15-tris(pentafluorophenyl)corrole[J]. Angew. Chem. Int. Ed., 2000,39(22):4048-4051. doi: 10.1002/1521-3773(20001117)39:22<4048::AID-ANIE4048>3.0.CO;2-7

    47. [47]

      Ziegler J A, Buckley H L, Arnold J. Synthesis and reactivity of tantalum corrole complexes[J]. Dalton Trans., 2017,46(3):780-785. doi: 10.1039/C6DT04265A

    48. [48]

      Einrem R F, Gagnon K J, Alemayehu A B, Ghosh A. Metal-ligand misfits: Facile access to rhenium-oxo corroles by oxidative metalation[J]. Chem. Eur. J., 2016,22(2):517-520. doi: 10.1002/chem.201504307

    49. [49]

      Alemayehu A B, Gagnon K J, Terner J, Ghosh A. Oxidative metalation as a route to size-mismatched macrocyclic complexes: Osmium corroles[J]. Angew. Chem. Int. Ed., 2014,53(52):14411-14414. doi: 10.1002/anie.201405890

    50. [50]

      Palmer J H, Day M W, Wilson A D, Henling L M, Gross Z, Gray H B. Iridium corroles[J]. J. Am. Chem. Soc., 2008,130(25):7786-7787. doi: 10.1021/ja801049t

    51. [51]

      Alemayehu A B, Vazquez-Lima H, Beavers C M, Gagnon K J, Bendix J, Ghosh A. Platinum corroles[J]. Chem. Commun., 2014,50(76):11093-11096. doi: 10.1039/C4CC02548B

    52. [52]

      Mahammed A, Gross Z. Aluminum corrolin, a novel chlorophyll analogue[J]. J. Inorg. Biochem., 2002,88(3/4):305-309.

    53. [53]

      Buckley H L, Anstey M R, Gryko D T, Arnold J. Lanthanide corroles: A new class of macrocyclic lanthanide complexes[J]. Chem. Commun., 2013,49(30)3104. doi: 10.1039/c3cc38806a

    54. [54]

      Armstrong K C, Hohloch S, Lohrey T D, Zarkesh R A, Arnold J, Anstey M R. Control of clustering behavior in anionic cerium(Ⅲ) corrole complexes: From oligomers to monomers[J]. Dalton Trans., 2016,45(46):18653-18660. doi: 10.1039/C6DT03884K

    55. [55]

      Buckley H L, Chomitz W A, Koszarna B, Tasior M, Gryko D T, Brothers P J, Arnold J. Synthesis of lithium corrole and its use as a reagent for the preparation of cyclopentadienyl zirconium and titanium corrole complexes[J]. Chem. Commun., 2012,48(87)10766. doi: 10.1039/c2cc35984g

    56. [56]

      Albrett A M, Conradie J, Boyd P D W, Clark G R, Ghosh A, Brothers P J. Corrole as a binucleating ligand: Preparation, molecular structure and density functional theory study of diboron corroles[J]. J. Am. Chem. Soc., 2008,130(10):2888-2889. doi: 10.1021/ja077785u

    57. [57]

      Lu G F, Yan S, Shi M Y, Yu W H, Li J, Zhu W H, Ou Z P, Kadish K M. A new class of rare earth tetrapyrrole sandwich complexes containing corrole and phthalocyanine macrocycles: Synthesis, physicochemical characterization and X‑ray analysis[J]. Chem. Commun., 2015,51(12):2411-2413. doi: 10.1039/C4CC09755F

    58. [58]

      Kadish K M, Burdet F, Ou Z, Shao J, Guilard R. Synthesis, physicochemical and electrochemical properties of metal bonded ruthenium corrole homodimers[J]. J. Organomet. Chem., 2002,652(1/2):69-76.

    59. [59]

      Padilla R, Buckley H L, Ward A L, Arnold J. Synthesis, Structure and reactivity of group 4 corrole complexes[J]. Chem. Commun., 2014,50(22)2922. doi: 10.1039/c4cc00037d

    60. [60]

      Nigel-Etinger I, Goldberg I, Gross Z. 5d early-transition-metal corroles: A trioxo-bridged binuclear tungsten(Ⅵ) derivative[J]. Inorg. Chem., 2012,51(4):1983-1985. doi: 10.1021/ic202325h

    61. [61]

      Lu G F, Li J, Yan S, Zhu W H, Ou Z P, Kadish K M. Synthesis and characterization of rare earth corrole-phthalocyanine heteroleptic triple-decker complexes[J]. Inorg. Chem., 2015,54(12):5795-5805. doi: 10.1021/acs.inorgchem.5b00477

    62. [62]

      Ward A L, Buckley H L, Lukens W W, Arnold J. Synthesis and characterization of thorium(Ⅳ) and uranium(Ⅳ) corrole complexes[J]. J. Am. Chem. Soc., 2013,135(37):13965-13971. doi: 10.1021/ja407203s

    63. [63]

      Ganguly S, Ghosh A. Seven clues to ligand noninnocence: The metallocorrole paradigm[J]. Acc. Chem. Res., 2019,52(7):2003-2014. doi: 10.1021/acs.accounts.9b00115

    64. [64]

      Will S, Lex J, Vogel E, Schmickler H, Gisselbrecht J, Haubtmann C, Bernard M, Gorss M. Nickel and copper corroles: Well-known complexes in a new light[J]. Angew. Chem. Int. Ed., 1997,36(4):357-361. doi: 10.1002/anie.199703571

    65. [65]

      Alemayehu A B, Gonzalez E, Hansen L K, Ghosh A. Copper corroles are inherently saddled[J]. Inorg. Chem., 2009,48(16):7794-7799. doi: 10.1021/ic900744v

    66. [66]

      Lemon C M, Huynh M, Maher A G, Anderson B L, Bloch E D, Powers D C, Nocera D G. Electronic structure of copper corroles[J]. Angew. Chem. Int. Ed., 2016,55(6):2176-2180. doi: 10.1002/anie.201509099

    67. [67]

      Wu F, Liu J, Mishra P, Komeda T, Mack J, Chang Y, Kobayashi N, Shen Z. Modulation of the molecular spintronic properties of adsorbed copper corroles[J]. Nat. Commun., 2015,6(1)7547. doi: 10.1038/ncomms8547

    68. [68]

      Brückner C, Barta C A, Briñas R P, Krause B J A. Synthesis and structure of[meso-triarylcorrolato]silver(Ⅲ)[J]. Inorg. Chem., 2003,42(5):1673-1680. doi: 10.1021/ic0261171

    69. [69]

      Stefanelli M, Shen J, Zhu W, Mastroianni M, Mandoj F, Nardis S, Ou Z, Kadish K M, Fronczek F R, Smith K M, Paolesse R. Demetalation of silver(Ⅲ) corrolates[J]. Inorg. Chem., 2009,48(14):6879-6887. doi: 10.1021/ic900859a

    70. [70]

      Sinha W, Sommer M G, Deibel N, Ehret F, Sarkar B, Kar S. Silver corrole complexes: Unusual oxidation states and near-IR-absorbing dyes[J]. Chem.-Eur. J., 2014,20(48):15920-15932. doi: 10.1002/chem.201403609

    71. [71]

      Thomas K E, Vazquez-Lima H, Fang Y, Song Y, Gagnon K J, Beavers C M, Kadish K M, Ghosh A. Ligand noninnocence in coinage metal corroles: A silver knife-edge[J]. Chem.-Eur. J., 2015,21(47):16839-16847. doi: 10.1002/chem.201502150

    72. [72]

      Stefanelli M, Ricci A, Chiarini M, Lo Sterzo C, Berna B B, Pomarico G, Sabuzi F, Galloni P, Fronczek F R, Smith K M, Wang L, Ou Z P, Kadish K M, Paolesse R. β-arylethynyl substituted silver corrole complexes[J]. Dalton Trans., 2019,48(36):13589-13598. doi: 10.1039/C9DT03166A

    73. [73]

      Xu J L, Zhu L, Gao H, Li C H, Zhu M J, Jia Z Y, Zhu X Y, Zhao Y, Li S C, Wu F, Shen Z. Ligand non-innocence and single molecular spintronic properties of Ag dibenzocorrole radical on Ag(111)[J]. Angew. Chem. Int. Ed., 2021,60(21):11702-11706. doi: 10.1002/anie.202016674

    74. [74]

      Jérôme F, Barbe J M, Gros C P, Guilard R, Fischer J, Weiss R. Peculiar reactivity of face to face biscorrole and porphyrin-corrole with a nickel(Ⅱ) salt[J]. X-ray structural characterization of a new nickel(Ⅱ) bisoxocorrole. New J. Chem., 2001,25(1):93-101.

    75. [75]

      Chen Q C, Fite S, Fridman N, Tumanskii B, Mahammed A, Gross Z. Hydrogen evolution catalyzed by corrole-chelated nickel complexes, characterized in all catalysis-relevant oxidation states[J]. ACS Catal., 2022,12(8):4310-4317. doi: 10.1021/acscatal.1c05243

    76. [76]

      Aviv-Harel I, Gross Z. Coordination chemistry of corroles with focus on main group elements[J]. Coord. Chem. Rev., 2011,255(7/8):717-736.

    77. [77]

      Naitana M L, Nardis S, Pomarico G, Raggio M, Caroleo F, Cicero D O, Lentini S, Prodi L, Genovese D, Mitta S, Sgarlata A, Fanfoni M, Persichetti L, Paolesse R. A highly emissive water-soluble phosphorus corrole[J]. Chem.-Eur. J., 2017,23(4):905-916. doi: 10.1002/chem.201604233

    78. [78]

      Zahn C, Stensitzki T, Gerecke M, Berg A, Mahammed A, Gross Z, Heyne K. Ultrafast dynamics of Sb-corroles: A combined vis-pump supercontinuum probe and broadband fluorescence up-conversion study[J]. Molecules, 2017,22(7)1174. doi: 10.3390/molecules22071174

    79. [79]

      Babu B, Prinsloo E, Mack J, Nyokong T. Synthesis, characterization and photodynamic activity of Sn(Ⅳ) triarylcorroles with red-shifted Q bands[J]. New J. Chem., 2019,43(47):18805-18812. doi: 10.1039/C9NJ03391B

    80. [80]

      Vestfrid J, Goldberg I, Gross Z. Tuning the photophysical and redox properties of metallocorroles by iodination[J]. Inorg. Chem., 2014,53(19):10536-10542. doi: 10.1021/ic501585a

    81. [81]

      Wagnert L, Rubin R, Berg A, Mahammed A, Gross Z, Levanon H. Photoexcited triplet state properties of brominated and nonbrominated Ga(Ⅲ)-corroles as studied by time-resolved electron paramagnetic resonance[J]. J. Phys. Chem. B, 2010,114(45):14303-14308. doi: 10.1021/jp911465p

    82. [82]

      Vestfrid J, Botoshansky M, Palmer J H, Durrell A C, Gray H B, Gross Z. Iodinated aluminum(Ⅲ) corroles with long-lived triplet excited states[J]. J. Am. Chem. Soc., 2011,133(33):12899-12901. doi: 10.1021/ja202692b

    83. [83]

      Mahammed A, Gross Z. Corroles as triplet photosensitizers[J]. Coord. Chem. Rev., 2019,379:121-132. doi: 10.1016/j.ccr.2017.08.028

    84. [84]

      Shao W L, Wang H, He S, Shi L, Peng K M, Lin Y F, Zhang L, Ji L N, Liu H Y. Photophysical properties and singlet oxygen generation of three sets of halogenated corroles[J]. J. Phys. Chem. B, 2012,116(49):14228-14234. doi: 10.1021/jp306826p

    85. [85]

      Soll M, Sudhakar K, Fridman N, Müller A, Röder B, Gross Z. One-pot conversion of fluorophores to phosphorophores[J]. Org. Lett., 2016,18(22):5840-5843. doi: 10.1021/acs.orglett.6b02877

    86. [86]

      Pohl J, Saltsman I, Mahammed A, Gross Z, Röder B. Inhibition of green algae growth by corrole-based photosensitizers[J]. J. Appl. Microbiol., 2015,118(2):305-312. doi: 10.1111/jam.12690

    87. [87]

      Einrem R F, Alemayehu A B, Borisov S M, Ghosh A, Gederaas O A. Amphiphilic rhenium-oxo corroles as a new class of sensitizers for photodynamic therapy[J]. ACS Omega, 2020,5(18):10596-10601. doi: 10.1021/acsomega.0c01090

    88. [88]

      Shi Z X, Han X, Hu W B, Bai H, Peng B, Ji L, Fan Q L, Li L, Huang W. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations[J]. Chem. Soc. Rev., 2020,49(21):7533-7567. doi: 10.1039/D0CS00234H

    89. [89]

      Agadjanian H, Ma J, Rentsendorj A, Valluripalli V, Hwang J Y, Mahammed A, Farkas D L, Gray H B, Gross Z, Medina-Kauwe L K. Tumor detection and elimination by a targeted gallium corrole[J]. Proc. Natl. Acad. Sci. U. S. A., 2009,106(15):6105-6110. doi: 10.1073/pnas.0901531106

    90. [90]

      Vestfrid J, Kothari R, Kostenko A, Goldberg I, Tumanskii B, Gross Z. Intriguing physical and chemical properties of phosphorus corroles[J]. Inorg. Chem., 2016,55(12):6061-6067. doi: 10.1021/acs.inorgchem.6b00544

    91. [91]

      Desbois N, Michelin C, Chang Y, Stupar V, Bonnaud M, Pacquelet S, Gros C P. Synthetic strategy for preparation of a folate corrole DOTA heterobimetallic Cu-Gd complex as a potential bimodal contrast agent in medical imaging[J]. Tetrahedron Lett., 2015,56(51):7128-7131. doi: 10.1016/j.tetlet.2015.11.032

    92. [92]

      Hu L F, Xu Y, Zhao Y, Mei Z J, Xiong C X, Xiao J Y, Zhang J X, Tian J. Supramolecular nanovesicles with in-situ switchable photothermal/photodynamic effects for precisely controllable cancer phototherapy[J]. Chem. Eng. J., 2023,476146829. doi: 10.1016/j.cej.2023.146829

    93. [93]

      Calvete M J F, Pinto S M A, Pereira M M, Geraldes C F G C. Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications[J]. Coord. Chem. Rev., 2017,333:82-107. doi: 10.1016/j.ccr.2016.11.011

    94. [94]

      Wahsner J, Gale E M, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: Current challenges and new frontiers[J]. Chem. Rev., 2019,119(2):957-1057. doi: 10.1021/acs.chemrev.8b00363

    95. [95]

      Jiang X, Liu R X, Liu H Y, Chang C K. Corrole-based photodynamic antitumor therapy[J]. J. Chin. Chem. Soc., 2019,66(9):1090-1099. doi: 10.1002/jccs.201900176

    96. [96]

      Knoll J D, Turro C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy[J]. Coord. Chem. Rev., 2015,282-283:110-126. doi: 10.1016/j.ccr.2014.05.018

    97. [97]

      Wang L L, Zhang L, Wang H, Zhang Y, Huang J T, Zhu H, Ying X, Ji L N, Liu H Y. Photoinduced electron transfer between anionic corrole and DNA[J]. J. Phys. Chem. A, 2016,120(4):535-542. doi: 10.1021/acs.jpca.5b11021

    98. [98]

      Huang G, Yang W, Si L P, Song Y Q, Li M Y, Liu Z Y, Liao Y H, Liu H Y. Photodynamic antitumor activity of dihydroxyl A2B triaryl corrole and its gallium(Ⅲ) and phosphorus(Ⅴ) complexes[J]. J. Mol. Struct., 2024,1295136758. doi: 10.1016/j.molstruc.2023.136758

    99. [99]

      Yadav P, Khoury S, Fridman N, Sharma V K, Kumar A, Majdoub M, Kumar A, Diskin-Posner Y, Mahammed A, Gross Z. Trifluoromethyl hydrolysis en route to corroles with increased druglikeness[J]. Angew. Chem. Int. Ed., 2021,60(23):12829-12834. doi: 10.1002/anie.202103477

    100. [100]

      Sharma V K, Mahammed A, Soll M, Tumanskii B, Gross Z. Corroles and corrole/transferrin nanoconjugates as candidates for sonodynamic therapy[J]. Chem. Commun., 2019,55(85):12789-12792. doi: 10.1039/C9CC06494J

    101. [101]

      Soy R C, Babu B, Mack J, Nyokong T. The photodynamic activities of the gold nanoparticle conjugates of phosphorus(Ⅴ) and gallium(Ⅲ) A3 meso-triarylcorroles[J]. Dyes Pigm., 2021,194109631. doi: 10.1016/j.dyepig.2021.109631

    102. [102]

      Cheng F, Wang H H, Ali A, Kandhadi J, Wang H, Wang X L, Liu H Y. Photophysical properties and photodynamic anti-tumor activity of corrole-coumarin dyads[J]. J. Porphyr. Phthalocyanines, 2018,22(9/10):886-898.

    103. [103]

      Sun Y M, Jiang X, Liu Z Y, Liu L G, Liao Y H, Zeng L, Ye Y, Liu H Y. Hydroxy-corrole and its gallium(Ⅲ) complex as new photosensitizer for photodynamic therapy against breast carcinoma[J]. Eur. J. Med. Chem., 2020,208112794. doi: 10.1016/j.ejmech.2020.112794

    104. [104]

      Jung H S, Verwilst P, Sharma A, Shin J, Sessler J L, Kim J S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe[J]. Chem. Soc. Rev., 2018,47(7):2280-2297. doi: 10.1039/C7CS00522A

    105. [105]

      Mao Q L, Fang J, Wang A N, Zhang Y Q, Cui C X, Ye S Y, Zhao Y, Feng Y L, Li J C, Shi H B. Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for activated tumor theranostics[J]. Angew. Chem. Int. Ed., 2021,60(44):23805-23811. doi: 10.1002/anie.202109863

    106. [106]

      Gao H, Zhi X, Wu F, Zhao Y, Cai F F, Li P F, Shen Z. Molecular engineering of corrole radicals by polycyclic aromatic fusion: Towards open-shell near-infrared materials for efficient photothermal therapy[J]. Angew. Chem. Int. Ed., 2023,62(40)e202309208. doi: 10.1002/anie.202309208

    107. [107]

      Lacerda P S S, Bartolomeu M, Gomes A T P C, Duarte A S, Almeida A, Faustino M A F, Neves M G P M S, Barata J F B. Can corrole dimers be good photosensitizers to kill bacteria?[J]. Microorganisms, 2022,10(6)1167. doi: 10.3390/microorganisms10061167

    108. [108]

      Bornhütter T, Pohl J, Fischer C, Saltsman I, Mahammed A, Gross Z, Röder B. Development of singlet oxygen luminescence kinetics during the photodynamic inactivation of green algae[J]. Molecules, 2016,21(4)485. doi: 10.3390/molecules21040485

    109. [109]

      Shamali N, Preuß A, Saltsman I, Mahammed A, Gross Z, Däschlein G, Röder B. In vitro photodynamic inactivation (PDI) of pathogenic germs inducing onychomycosis[J]. Photodiagn. Photodyn. Ther., 2018,24:358-365. doi: 10.1016/j.pdpdt.2018.11.002

    110. [110]

      Gomes L M F, Mahammed A, Prosser K E, Smith J R, Silverman M A, Walsby C J, Gross Z, Storr T. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation[J]. Chem. Sci., 2019,10(6):1634-1643. doi: 10.1039/C8SC04660C

    111. [111]

      Soll M, Goldshtein H, Rotkopf R, Russek-Blum N, Gross Z. A synthetic SOD/catalase mimic compound for the treatment of ALS[J]. Antioxidants, 2021,10(6)827. doi: 10.3390/antiox10060827

    112. [112]

      Haber A, Gross Z. Catalytic antioxidant therapy by metallodrugs: Lessons from metallocorroles[J]. Chem. Commun., 2015,51(27):5812-5827. doi: 10.1039/C4CC08715A

    113. [113]

      Haber A, Mahammed A, Fuhrman B, Volkova N, Coleman R, Hayek T, Aviram M, Gross Z. Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice[J]. Angew. Chem. Int. Ed., 2008,47(41):7896-7900. doi: 10.1002/anie.200801149

    114. [114]

      Cai H, Jia F, Cheng Q H, Ankri R, Cui J B, Wang L Y. Advanced biological optical sensors for visualization and quantification of radionuclides[J]. Trends Anal. Chem., 2024,175117704. doi: 10.1016/j.trac.2024.117704

    115. [115]

      Kumar A, Yadav P, Majdoub M, Saltsman I, Fridman N, Kumar S, Kumar A, Mahammed A, Gross Z. Corroles: The hitherto elusive parent macrocycle and its metal complexes[J]. Angew. Chem. Int. Ed., 2021,60(47):25097-25103. doi: 10.1002/anie.202110964

  • 加载中
    1. [1]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    2. [2]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    3. [3]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    4. [4]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    5. [5]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    6. [6]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    7. [7]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    10. [10]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    11. [11]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    12. [12]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    13. [13]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    14. [14]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    15. [15]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    16. [16]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    17. [17]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    18. [18]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    19. [19]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    20. [20]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

Metrics
  • PDF Downloads(0)
  • Abstract views(46)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return