Citation: Jun LUO, Baoshu LIU, Yunchang ZHANG, Bingkai WANG, Beibei GUO, Lan SHE, Tianheng CHEN. Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240 shu

Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution

Figures(5)

  • A novel europium metal-organic framework (Eu-MOF) with formula (H3O)6[Eu(BHC)(H2O)]2·H2O (1) has been synthesized successfully via the hydrothermal method by using a monoaromatic polycarboxylic acid ligand benzenehexacarboxylic acid (H6BHC) reacting with Eu(NO3)3·6H2O. Singlecrystal X-ray diffraction analysis reveals that in 1 the adjacent two Eu(Ⅲ) cations are bridged by the BHC6- ligands to form the Eu dinuclear unit as a node, and then the Eu dinuclear nodes join each other via the BHC6- as bridges plus the hydrogen bond interactions along a-, b- and c-axis to form a unique 3D network structure. Photoluminescence measurement indicates that 1 possesses the following advantages as the fluorescent probe: 1 displayed a very low limit of detection (LOD) for Pb2+ (0.42 μmol·L-1) in an aqueous system, and 1 demonstrated higher selectivity.
  • 加载中
    1. [1]

      Rodriguez B B, Bolbot J A, Tothill I E. Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples[J]. Biosens. Bioelectron., 2004,19:1157-1167. doi: 10.1016/j.bios.2003.11.002

    2. [2]

      Liu J, Goyer R A, Waalkes M P. Toxic effects of metals//Klaassen C D. Casarett and Doull's Toxicology: The Basic Science of Poisons. 7th ed. New York: The McGraw-Hill Companies Inc., 2008: 931-972

    3. [3]

      Huang K, Li B B, Zhou F, Mei S R, Zhou Y K, Jing T. Selective solidphase extraction of lead ions in water samples using three-dimensional ion-imprinted polymers[J]. Anal. Chem., 2016,88:6820-6826. doi: 10.1021/acs.analchem.6b01291

    4. [4]

      Qasem N A A, Ben-Mansour R, Habib M A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177[J]. Appl. Energy, 2018,210317326.

    5. [5]

      Gao J K, Qian X F, Lin R B, Krishna R, Wu H, Zhou W, Chen B L. Mixed metal organic framework with multiple binding sites for efficient C2H2/CO2 separation[J]. Angew. Chem. Int. Ed., 2020,5943964400.

    6. [6]

      Deng Z, Yu H J, Wang L, Liu J Y, Shea K J. Ferrocene-based metalorganic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst[J]. J. Mater. Chem. A, 2019,7:15975-15980. doi: 10.1039/C9TA03403J

    7. [7]

      Suresh K, Matzger A J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF)[J]. Angew. Chem. Int. Ed., 2019,58:16790-16794. doi: 10.1002/anie.201907652

    8. [8]

      Das P, Mandal S K. Nanoporous Zn-based metalorganic framework nanoparticles for fluorescent pH sensing and thermochromism[J]. ACS Appl. Nano Mater., 2020,3:9480-9486. doi: 10.1021/acsanm.0c02132

    9. [9]

      Gorai T, Schmitt W, Gunnlaugsson T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials[J]. Dalton Trans., 2021,50:770-784. doi: 10.1039/D0DT03684F

    10. [10]

      Zhang H, Chen D M, Ma H L, Cheng P. Real-time detection of traces of benzaldehyde in benzyl alcohol as a solvent by a flexible lanthanide microporous metal-organic framework[J]. Chem.-Eur. J., 2015,21:15854-15859. doi: 10.1002/chem.201502033

    11. [11]

      Hu Z C, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    12. [12]

      Chen H H, Zheng K T, Chen C L, Zhu Y H, Ma P T, Wang J P, Niu J Y. Luminescent dimeric oxalate-bridged Eu3+/Tb3+-implanted arsenotungstates: Tunable emission, energy transfer, and detection of Ba2+ ion in aqueous solution[J]. Inorg. Chem., 2022,61:3387-3395. doi: 10.1021/acs.inorgchem.1c03073

    13. [13]

      Cheng Y H, Wu M J, Du Z Y, Chen Y, Zhao L Y, Zhu Z W, Yu X B, Yang Y Y, Zeng C H. Tetra-nuclear cluster-based lanthanide metalorganic frameworks as white phosphor, information encryption, self calibrating thermometers, and Fe2+ sensors[J]. ACS Appl. Mater. Interfaces, 2023,15:24570-24582. doi: 10.1021/acsami.3c02644

    14. [14]

      Mohammed Ameen S Sh, Sher Mohammed N M, Omer K M. Visual monitoring of silver ions and cysteine using bi ligand Eu based metal organic framework as a reference signal: Color tonality[J]. Microchem. J., 2022,181107721. doi: 10.1016/j.microc.2022.107721

    15. [15]

      Wang R N, Zhang H, Wang S B, Meng F X, Sun J, Lou D W, Su Z M. A ratiometric fluorescent probe based on a dual ligand lanthanide metal-organic framework (MOF) for sensitive detection of aluminum and fluoride ions in river and tap water[J]. Inorg. Chem. Front., 2023,10:1534-1542. doi: 10.1039/D2QI02554J

    16. [16]

      Chen X L, Shang L, Liu L, Yang H, Cui H L, Wang J J. A highly sensitive and multi-responsive Tb-MOF fluorescent sensor for the detection of Pb2+, Cr2O72-, B4O72-, aniline, nitrobenzene and cefixime[J]. Dyes Pigment., 2021,196109809. doi: 10.1016/j.dyepig.2021.109809

    17. [17]

      Liu S Y, Liu M, Guo M M, Wang Z C, Wang X F, Cui W, Tian Z Y. Development of Eu-based metal-organic frameworks (MOFs) for luminescence sensing and entrapping of arsenate ion[J]. J. Lumin., 2021,236118102. doi: 10.1016/j.jlumin.2021.118102

    18. [18]

      Li Y G, Hu J J, Zhang J L, Liu S J, Peng Y, Wen H R. Lanthanidebased metal organic framework materials as bifunctional fluorescence sensors toward acetylacetone and aspartic acid[J]. CrystEngComm, 2022,24:2464-2471. doi: 10.1039/D2CE00174H

    19. [19]

      Mohammed Ameen S Sh, Qader I B, Qader H A, Algethami F K, Abdulkhair B Y, Omer K M. Dual-state dual emission from precise chemically engineered biligand MOF free from encapsulation and functionalization with self calibration model for visual detection[J]. Microchim. Acta, 2024,19162. doi: 10.1007/s00604-023-06148-5

    20. [20]

      Liu Y Z, Sun Q Y, Zhou H B, Gao H Y, Li D P, Li Y X. One-dimensional europium coordination polymer as luminescent sensor for highly selective and sensitive detection of 2, 4, 6 trinitrophenol[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,264120303. doi: 10.1016/j.saa.2021.120303

    21. [21]

      Sun L, Zhang Y, Lv X S, Li H D. A luminescent Eubased MOFs material for the sensitive detection of nitro explosives and development of fingerprint[J]. Inorg. Chem. Commun., 2023,156111267. doi: 10.1016/j.inoche.2023.111267

    22. [22]

      Li Y, Wang M, Yang G P, Wang Y Y. Fabrication of the antibiotic sensor by the multifunctional stable adjustable luminescent lanthanide metal-organic frameworks[J]. Inorg. Chem., 2023,62:4735-4744. doi: 10.1021/acs.inorgchem.3c00249

    23. [23]

      Xu Q W, Dong G Y, Cui R F, Li X. 3D lanthanide coordination frameworks constructed by a ternary mixed-ligand: Crystal structure, luminescence and luminescence sensing[J]. CrystEngComm, 2020,22:740-750. doi: 10.1039/C9CE01779H

    24. [24]

      Li J M, Li R, Li X. Construction of metal-organic frameworks (MOFs) and highly luminescent Eu (Ⅲ) MOF for the detection of inorganic ions and antibiotics in aqueous medium[J]. CrystEngComm, 2018,20:4962-4972. doi: 10.1039/C8CE00915E

    25. [25]

      Zhang P F, Yang G P, Li G P, Yang F, Liu W N, Li J Y, Wang Y Y. Series of water-stable lanthanide metal-organic frameworks based on carboxylic acid imidazolium chloride: Tunable luminescent emission and sensing[J]. Inorg. Chem., 2019,58:13969-13978. doi: 10.1021/acs.inorgchem.9b01954

    26. [26]

      Sheldrick G M. SADABS, A program for empirical absorption correction. University of Göttingen, Germany, 2014.

    27. [27]

      Sheldrick G M. SHELXT 2018, A program used to solve structure. University of Göttingen, Germany, 2018.

    28. [28]

      Sheldrick G M. SHELXL 2016, A program used to refine structure. University of Göttingen, Germany, 2016.

    29. [29]

      Sun S L, Sun X Y, Sun Q, Gao E Q, Zhang J L, Li W J. Europium metal-organic framework containing helical metal-carboxylate chains for fluorescence sensing of nitrobenzene and nitrofunans antibiotics[J]. J. Solid State Chem., 2020,292121701. doi: 10.1016/j.jssc.2020.121701

    30. [30]

      Dong J P, Li B, Jin Y J, Wang L Y. Efficient detection of Fe (Ⅲ) and chromate ions in water using two robust lanthanide metal organic frameworks[J]. CrystEngComm, 2021,23:1677-1683. doi: 10.1039/D0CE01802C

    31. [31]

      Judd B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962,127:750-761. doi: 10.1103/PhysRev.127.750

    32. [32]

      Zhou Y, Yan B, He X H. Controlled synthesis and up/down-conversion luminescence of self assembled hierarchical architectures of mono clinic AgRE (WO4)2: Ln3+(RE=Y, La, Gd, Lu; Ln=Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm)[J]. J. Mater. Chem. C, 2014,2:848-855. doi: 10.1039/C3TC31880J

    33. [33]

      Committee A M. Recommendations for the definition, estimation and use of the detection limit[J]. Analyst, 1987,112:199-204. doi: 10.1039/an9871200199

    34. [34]

      Chen B L, Wang L B, Xiao Y Q, Fronczek F R, Xue M, Cui Y J, Qian G D. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions[J]. Angew. Chem. Int. Ed., 2009,48:500-503. doi: 10.1002/anie.200805101

    35. [35]

      Wang Q Y, Ke W Q, Lou H Y, Han Y H, Wan J M. A novel fluorescent metal-organic framework based on porphyrin and AIE for ultrahigh sensitivity and selectivity detection of Pb2+ ions in aqueous solution[J]. Dyes Pigment., 2021,196109802. doi: 10.1016/j.dyepig.2021.109802

    36. [36]

      Li Q, Guan B B, Zhu W, Liu T H, Chen L H, Wang Y, Xue D X. Highly selective and sensitive dual fluorescent probe for cationic Pb2+ and anionic Cr2O72-, CrO42- contaminants via a powerful indiumorganic framework[J]. J. Solid State Chem., 2020,291121672. doi: 10.1016/j.jssc.2020.121672

    37. [37]

      Hao Z M, Song X Z, Zhu M, Meng X, Zhao S N, Su S Q, Yang W T, Song S Y, Zhang H J. One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion[J]. J. Mater. Chem. A, 2013,1:11043-11050. doi: 10.1039/c3ta12270k

    38. [38]

      Dang S, Ma E, Sun Z M, Zhang H J. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cationexchange approach[J]. J. Mater. Chem., 2012,22:16920-16926. doi: 10.1039/c2jm32661b

    39. [39]

      Yang C X, Ren H B, Yan X P. Fluorescent metal-organic framework MIL 53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution[J]. Anal. Chem., 2013,85:7441-7446. doi: 10.1021/ac401387z

    40. [40]

      Li J J, Fan T T, Qu X L, Han H L, Li X. Temperature-induced 1D lanthanide polymeric frameworks based on Lnn(n=2, 2, 4, 6) cores: Synthesis, crystal structures and luminescence properties[J]. Dalton Trans., 2016,45:2924-2935. doi: 10.1039/C5DT04262C

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(0)
  • Abstract views(54)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return